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Instantons, discovered in 1975, are solutions to the Euclidean-space classi-
cal equations of Quantum Chromodynamics (QCD). They have been found to play a
crucial role in many low energy phenomena driven by the strong interactions. Instan-
tons are the leading candidate for explaining spontaneous chiral symmetry breaking,
and they provide a mechanism for fermion propagation in the QCD vacuum.

At finite temperature, QCD is expected to undergo a transition into a chirally sym-
metric phase known as a quark-gluon plasma. In lattice calculations with dynamical
fermions, the instantons are expected to form ‘molecules’, polarized in the time di-
rection. In this work, we study finite temperature lattice configurations and find
evidence for this structure by analyzing the two-point charge correlator. We also
present tools that we developed for visualizing numerical data from lattice calcula-
tions.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the leading theory of the strong in-

teractions; it describes hadrons as composite objects built out of elementary fermions

called the quarks interacting via gauge bosons known as the gluons. While the math-

ematical formalism of QCD is well grounded in the framework of Yang-Mills gauge

theories as an SU(3) local gauge theory, we are today far from being able to extract

full quantitative predictions from it. The dimensionless gauge coupling of QCD runs

from small values at very high energies to large values at lower energies, limiting the

range where perturbation theory studies are of use.

One of the most fascinating aspects of QCD is the structure of its vacuum.

Because QCD is based on a non-abelian gauge group, even in the absence of fermion

fields the vacuum is a very complex object built out of self-interacting gauge fields.

These interactions allow the gauge fields to form very non-trivial structures with

wide-ranging impact on hadron phenomenology.

In 1975, a particular configuration of gauge fields known today as the in-

stanton was discovered by Belavin et al. [8]. Instantons, inherently non-perturbative

objects, are ‘lumps’ of gauge fields, localized in space and time and protected by

topological symmetries. They can be interpreted physically as tunneling solutions

between topologically inequivalent vacua of the gauge background. The discovery of

instantons prompted a flurry of research activity, as it was soon found that they had

a strong influence on the behavior of fermions.
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Today we understand the propagation of quarks in the gauge vacuum as

a process of ‘hopping’ from one instanton to another. Instantons are the leading

contender for the mechanism behind the spontaneous breaking of chiral symmetry.

Indeed, many of the low-energy properties of QCD are thought to be in one form or

another the consequence of the complex interplay between instantons and fermions.

The thermodynamics of QCD is also a very interesting topic. At low tem-

peratures QCD exhibits a phenomenon known as confinement, which means that we

never observe color charges by themselves (in particular, isolated quarks have never

been observed). At very high temperatures, we expect however the theory to un-

dergo a transition into a phase known as a quark-gluon plasma. In the QGP phase,

color charges act as free particles and there are no bound hadrons, only a combined

mixture of quarks and gluons with a number of interesting features.

While the QGP has not been experimentally observed yet, much progress

has been made in recent years with the advent of the Relativistic Heavy Ion Collider

(RHIC) facility at Brookhaven National Laboratory. The high-energy collisions be-

tween heavy ions at RHIC create conditions where we expect to see signatures of the

QGP phase, and there is much work in progress to analyze this data.

We know that at zero temperature chiral symmetry is spontaneously broken

in QCD (at zero quark mass), and as we said the instantons are the leading candidate

for explaining this phenomenon. As we turn the temperature up and go into the

QGP phase, chiral symmetry is restored. There are many hints which suggest that

instantons may also be responsible for this restoration of chiral symmetry, through

an interesting interplay with the fermions. In this work we will attempt to look at

this question using numerical techniques.

In the last 20 years, a method known as Lattice QCD, which consists of

representing the theory on a discrete Euclidean space time grid, has emerged as the

only candidate for a full exploration of the non-perturbative regime of QCD. While

this method allows us to maintain exactly the key gauge symmetry of the theory, it
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breaks other symmetries (notably Lorentz invariance) and is computationally very

expensive. For these reasons we are still far from being able to compute quantities

from QCD to arbitrarily high precision, although much progress has been made in

recent years.

In this thesis, we will use lattice calculations to explore the structure of

the QCD vacuum at finite temperature. In particular we will look at whether the

mechanisms suggested for driving the chiral transition via instantons are supported

by the numerical evidence. Our work is organized as follows. In Chapter 2 we present

an outline of the structure of QCD as a Yang-Mills quantum field theory; in Chapter

3 we present in detail the method of lattice QCD; in Chapter 4 we discuss instantons

in the continuum; in Chapter 5 we present the issues which arise when dealing with

topological objects on the lattice; in Chapter 6 we discuss the thermodynamics of

QCD and the expected phenomena related to instantons at finite temperature; in

Chapter 7 we discuss our analysis of the instanton structure in lattice calculations.

Since lattice calculations are done on a 4-dimensional grid, the resulting

data is not particularly convenient to analyze. While one is often interested in

aggregate quantities which depend only on one or two variables, there are a number

of situations where it would be of interest to be able to look directly at the gauge

and fermionic quantities on the 4-d lattice. In Chapter 8 we present a set of tools

we developed for this purpose, and use them to look at some particularly interesting

quantities connected to the rest of our work. Finally, in Chapter 9 we discuss our

results and the outlook of this line of inquiry for future research.



Chapter 2

QCD - The Theory of Strong Interactions

The currently established theory which describes the fundamental inter-

actions of the constituents of nature, excluding gravity, is known as the Standard

Model. It has the structure of a Yang-Mills gauge theory and is a combination of

the Glashow-Salam-Weinberg model for the electroweak interactions described by an

SU(2) × U(1) group with the strong interactions based on an SU(3) group. In this

chapter we will present a brief outline of the QCD framework, mainly with the intent

of establishing the terminology and notation.

2.1 Quarks

After the successes of physics in the 1940s and 50s in building nuclear

models in terms of basic constituents (the proton and the neutron), evidence began

to accumulate in favor of a similar picture for the nucleons themselves. Amongst

other issues, the rapidly rising number of ‘elementary’ particles being produced in

increasingly powerful particle accelerators in the 1950s was becoming a conceptual

sore in the framework of physics. An idea similar to the organization of the periodic

table in terms of a few basic blocks (nucleons and electrons) was needed.

In the early 1960s Gell-Mann and Zweig proposed that the observed spec-

trum of elementary particles could be described in terms of irreducible representa-

tions of an SU(3) group. This idea gained strong support when the Ω− particle was

detected at Brookhaven National Laboratory in 1964 with precisely the expected
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properties, and at that point Gell-Mann proposed to give the basic elements of the

fundamental representation of SU(3) physical reality, calling them quarks (a word

taken from James Joyce’s Finnegan’s Wake). The quarks were proposed to be spin

1/2 particles with fractional electric charges of ±1/3,±2/3 in units of e, as needed

to account for the fact that nucleons (made from three quarks) were fermions with

integer charges.

It soon became obvious that the quark model of hadrons would require

another quantum number, because states with otherwise identical quantum numbers

were found, in violation of Pauli’s exclusion principle. This quantum number was

called color and it was also governed by an SU(3) group. However, in contrast

to the original global SU(3) flavor group of the quark model, the color SU(3) was

proposed1 as a local gauge symmetry. Its eight generators appear physically as the

gauge bosons, the carriers of the color interactions. Because they are really what

‘glues’ the nucleons together, these eight gauge bosons are known as the gluons.

Phenomenologically, the strong interactions exhibit an interesting balance

of opposites. For a long time, deep inelastic scattering experiments hinted that the

short distance behavior of QCD was similar to that of a theory of nearly free quarks, a

behavior known as asymptotic freedom. At the opposite end of the distance scale, the

observed behavior is strikingly different. Despite exhaustive experimental searches,

no free quark, neither any object carrying color charge, has ever been found. It

appears that at long distances, the QCD coupling is so strong that it prevents the

constituent quarks from wandering on their own. This phenomenon is known as

confinement.

These are some of the boundary conditions that any successful theoretical

model of the strong interactions must satisfy. In the 1970s, phenomenological models

based on asymptotic freedom and confinement as starting assumptions, were fairly

1Deep inelastic experiments gave evidence for asymptotic freedom, known to be a possible feature
of Yang-Mills theories. Since the color symmetry had no other obvious physical significance, it was
proposed as the local gauge symmetry for the quarks.
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successful. One such theory, the MIT bag model, allowed fairly detailed predictions

for some properties of the light hadrons ([14], [21]). The bag model postulated

that the quarks behaved as weakly interacting relativistic fermions confined to a

finite region of space. From there it was able to make quantitative predictions for

light hadron spectroscopy. However, a full explanation of these features from first

principles is required.

Today we have experimental evidence for the existence of six quarks instead

of the original three in Gell-Mann’s days, so the flavor SU(3) structure is only an

approximate description valid for the lighter hadrons. However, the color SU(3)

model remains as the leading theory of strong interactions, and we have confidence

it will provide a description of the known phenomenology.

2.2 Mathematical Outline of QCD

QCD is a theory which describes the interactions of six spin 1/2 fermions

–the quarks– via gauge bosons known as gluons. The six quarks, in increasing mass

order, are known as: up (u), down (d), strange (s), charm (c), bottom (b) and top

(t). The Lagrangian for QCD has the usual form of any Yang-Mills theory based

on a non-Abelian gauge group, SU(3) in this case. SU(3) has eight generators, and

their standard form in the fundamental representation is known as the Gell-Mann

λ matrices. These are Hermitian, traceless 3 × 3 matrices which satisfy the group

algebra

[λa, λb] = 2ifabcλc, (2.1)

where fabc are the SU(3) structure constants. The λ matrices are normalized ac-

cording to

Tr[λaλb] = 2δab. (2.2)
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Further details on the properties of SU(3) can be found in any standard reference

on the subject ([33], [59]).

To each of the generators λa we associate a set of local gauge fields Aaµ(x)

from which we construct

Aµ(x) =
1

2

8∑

a=1

λaA
a
µ(x). (2.3)

Using these we can then build the gluon field strength tensor as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (2.4)

where g is the dimensionless bare coupling constant for QCD, the only free gauge

parameter of the theory.

The fermionic part of the action will be built from quark fields. Each is a

color SU(3) triplet with the common labels (r, g, b) for the colors:

ψ(x) =









ψr(x)

ψg(x)

ψb(x)









. (2.5)

With these elements we can then write the full QCD Lagrangian as

L = −1

2
Tr(FµνF

µν) +

Nf∑

f=1

ψ̄f (pµ + gAµ)γ
µψf −mf ψ̄fψf , (2.6)

where Nf is the number of quark flavors under consideration at a given energy scale,

and γµ are the usual Dirac matrices.

The full Standard Model Lagrangian will include this QCD Lagrangian, the

electroweak terms, and the coupling terms between the quarks and the other sectors

of the theory.
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Table 2.1: Basic interactions in the Standard Model.

Name Gauge Boson Range Strength

Weak Force W±, Z0 (3) < 10−17 m 10−5

Electromagnetism Photon, γ (1) Long: F ∼ r−2 1/137

Strong Force Gluons, g (8) 10−15 m 1

Table 2.1 summarizes some details of the various components of the Stan-

dard Model. Of particular interest to us is the last column, which gives the order of

magnitude of the dimensionless coupling constant for each interaction. The size of

the QCD coupling means that perturbative expansions are of limited use.

Asymptotic freedom can be understood by looking at the high momentum

(short distance) behavior of the QCD coupling constant. We will not go into the

full details of a renormalization analysis of this constant here. Let us only state that

for an SU(3) Yang-Mills theory with one dimensionless coupling constant, one can

show that at short distances the coupling constant runs to zero, providing effectively

a free theory. A complete discussion of this topic can be found in any textbook on

quantum field theory or QCD ([59], [33]).

A näıve approach would suggest that an extension of the asymptotic free-

dom argument is enough to explain confinement. Since the renormalization group

analysis tells us that the QCD coupling runs asymptotically to zero at high energies,

one could assume that in the opposite limit, it will run to large values at low energies

(long distances). However, the asymptotic freedom argument is a perturbative one

based on a small-coupling expansion of the β function. There is no reason to assume

that this behavior is maintained monotonically at larger values of the coupling.

For a complete understanding of confinement, as well as other features of

the theory, we need a way to directly probe the non-perturbative regime of QCD.

In the next chapter we will present an outline of Lattice QCD, the only known

method today which can tackle the full non-perturbative structure of Yang-Mills

gauge theories.



Chapter 3

QCD on the Lattice

We have seen that QCD is a theory where perturbative studies are of limited

utility, yet we do not have any known method for obtaining analytic solutions to the

full QCD equations. The Lattice QCD approach was developed to address this

problem, by discretizing the theory on a space-time grid and computing the required

quantities at any value of the coupling constant. Since the introduction of a finite

grid turns the continuous equations into a finite system, numerical methods can be

used to compute the solutions with computers. In practice there remain a number of

significant obstacles to be overcome even today, but the lattice approach has proved

very useful, and remains to this day the only way to study the full non-perturbative

regime of QCD.

In the rest of this chapter we will briefly present the basic elements of the

lattice approach to QCD, following the lines of the introductory presentations [18],

[34], [55] and [22]. More details can be found therein or in the comprehensive [66].

3.1 The Path Integral Formulation

Once we write the quantities we are interested in computing from our theory

in the form of vacuum expectation values (VEVs) of operators, we need a way to

explicitly calculate these expectation values. In order to set up a non-perturbative

solution method for QCD, we begin by writing these in the language of Feynman

path integrals.
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We start with an operator O, where O is any combination of operators

expressed in terms of time-ordered products of gauge and quark fields. The VEV

〈0| O |0〉 we are interested in, where |0〉 represents the vacuum state for the free

theory, is given by

〈0| O |0〉 =

∫
DAµDψDψ̄O(ψ, ψ̄, A)e−S
∫
DAµDψDψ̄ e−S

, (3.1)

where S is the action, the integral of the Lagrangian density

S =

∫

d4x L, L =
1

4
FµνF

µν − ψ̄Mψ, (3.2)

and M is the Dirac operator. These expressions are valid in Euclidean space-time,

where after a rotation of the time axis (t → iτ) the oscillatory factors eiS become

the numerically more manageable e−S .

We should mention that in Euclidean space, our vacuum expectation values

have exactly the structure of thermal expectation values in statistical mechanics. A

quantum field theory in Euclidean space-time (with N spatial and one time dimen-

sions) can be connected to a classical statistical system in N+1 spatial dimensions in

thermal equilibrium with a heat reservoir. This correspondence is in fact extremely

useful [59], as it provides new sources of intuition and methods for quantum field

theory from statistical mechanics, and vice-versa. In recent years, Wilson’s renor-

malization group ideas (originally developed in the context of second order phase

transitions, [85], [86]) have been extremely useful in quantum field theory, and in

particular in lattice QCD ([23], [24], [20], [43]).

In Eq. (3.2) the fermionic fields, represented by the Grassman variables ψ

and ψ̄, can be integrated out exactly so that the above partition function becomes

Z =

∫

DAµ detM e
R
d4x (− 1

4
FµνFµν). (3.3)
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This expression, although exact, introduces a numerical difficulty: the term detM

is a highly non-local expression whose evaluation is computationally expensive. One

therefore often resorts to the approximation known as quenching, which consists of

setting detM = const and whose physical meaning is to ignore vacuum polarization

effects from the QCD vacuum.

Except for the possible approximation of quenching, Eq. (3.1) is an exact

expression. But it represents an infinite-dimensional functional integral, an object

whose measure is not well defined. The lattice approach consists of discretizing the

space-time continuum as a 4-dimensional grid where the fermion and gauge fields live.

On this finite grid, the measure of the Feynman Path Integral becomes a well defined

object. We can then proceed to compute the resulting large but finite-dimensional

integrals using numerical methods.

3.2 Gauge Symmetry

Since local gauge symmetry is one of the cornerstones of the very structure

of QCD, it is important that any computational approach implements it exactly.

As we will see, it is indeed possible to put QCD on a discrete lattice while fully

respecting local gauge invariance. This is in contrast with Lorentz invariance, which

is broken at any finite lattice spacing and is only restored in the continuum limit.

Since the geometrical role played by the gauge fields is to serve as con-

nections between different space-time points (or physically, the gluons carry the

interaction between fermions at different locations), it seems sensible to locate them

on the links between lattice points. Indeed, the lattice formulation of QCD puts all

quark fields on sites of the lattice, and all gluon fields on the links between those

sites.

In the continuum, a fermion moving in space from x to y in the presence of
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a gauge background Aµ(x) picks up a phase factor given by the path ordered product

ψ(y) = Pe
R y
x igAµ(x)dxµψ(x). (3.4)

The P symbol represents the path ordering operator, which defines the exponential

so that matrices evaluated closer to y stand to the left and those closer to x stand

to the right.

To each lattice gauge field, Wilson [87] proposed to associate a discrete

version of Eq. (3.4)

U(x, x+ µ̂) ≡ Uµ(x) = eiagAµ(x+ µ̂
2
) (3.5)

where µ̂ is a unit vector in the µ direction and a is the lattice spacing. From this

definition, U is a member of the SU(3) group and it satisfies the path ordering

condition

U(x, x− µ̂) ≡ U−µ(x) = e−iagAµ(x− µ̂
2
) = U †(x− µ̂, x) . (3.6)

Under a local gauge transformation V (x) ∈ SU(3), the variables ψ(x) and

U transform as

ψ(x) → V (x)ψ(x),

ψ̄(x) → ψ̄(x)V †(x), (3.7)

Uµ(x) → V (x)Uµ(x)V
†(x+ µ̂),

where V (x) is in the same representation as the U. There are then two ways of

constructing objects which are automatically gauge invariant:

(1) An open line made from a path-ordered product of links (Uµ(x) at various
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x), terminated by a fermion and an antifermion at its endpoints, such as

ψ̄(x)Uµ(x)Uν(x+ µ̂) . . . Uρ(y − ρ̂)ψ(y). (3.8)

(2) Any closed loop. The simplest example of this (and the basic building block

of the gauge action on the lattice) is the plaquette, a 1 × 1 loop of the form

W 1×1
µν = Re Tr (Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν(x)) . (3.9)

In SU(N ≥ 3) the trace of any closed loop is complex, with the two possible

path orderings giving complex conjugate values.

In the above the trace over color indices is necessary in order to guarantee the gauge

invariance of the final object. This can be seen by considering a single path ordered

loop U(y, y) which begins and ends at point y. From Eq. (3.7), it transforms as

U(y, y) → V (y)U(y, y)V †(y), (3.10)

but once we take its trace, using the cyclic symmetry of the trace we obtain

Tr U(y, y) → Tr U(y, y). (3.11)

Using closed loops and fermion-bracketed lines, we can then construct a

representation of any physically interesting operator for our theory. This form guar-

antees that gauge invariance is inherently preserved even at non-zero lattice spacing

a. This gives us considerable freedom in choosing how to represent the operators of

the continuum theory. We must only ensure that whichever lattice form we choose

reduces to the continuum form in the limit a → 0. We can then adapt the lattice

representation to improve the properties of our operators at finite a with respect to

other symmetries of the continuum which are broken on the lattice.
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3.3 The Lattice Action

First we take a look at the gauge part of the action. By expanding the

plaquette to first order in a one can show that

1

g2

∑

x

∑

µ<ν

Re Tr(1 −W 1×1
µν ) ∼

∫

d4xFµνF
µν (3.12)

and taking the specific numerical factors of SU(3) into account we can then write

the QCD gauge action as

SG = β
∑

x

∑

µ<ν

Re Tr(1 −W 1×1
µν ); β =

6

g2
. (3.13)

The action SG has the correct continuum limit but includes discretization errors of

O(a2). This problem can be addressed systematically by adding suitably weighed

terms to the action which respect the continuum limit which cancel the corrections

at a given order[72].

The fermionic continuum action is given by

SF =

∫

d4xψ̄(x)[γµ∂µ +m]ψ(x). (3.14)

Its simplest discretization, known as the näıve quark action, is

SNF =
∑

x

ψ̄(x)MN
xyψ(y) (3.15)

where the interaction matrix MN is

MN
xy = mδxy +

1

2a

∑

µ

[γµUx,µδx,y−µ − γµU
†
x−µ,µδx,y+µ], (3.16)
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and

Ux,µ ≡ Uµ(x) ∈ SU(3). (3.17)

The action SF , just like its gauge counterpart (3.13), is correct in the limit

a→ 0 but it has discretization errors at any finite a.

Furthermore, SF suffers from a particularly vexing problem commonly re-

ferred to as fermion doubling. This problem is immediately apparent when one

considers the behavior of the two-point function or propagator:

GN (x, y) ≡
〈
ψ̄(x)ψ(y)

〉
. (3.18)

The propagator is easiest to compute in momentum space, by Fourier transform-

ing the action (3.15) with all Uµ(x) = 1. The resulting (inverse) is, for the näıve

discretization, given by:

G−1
N (p) = iγµ

sin(pµa)

a
+m, (3.19)

which we need to compare with the continuum inverse propagator:

G−1
F (p) = iγµpµ +m. (3.20)

These two propagators coincide in the p→ 0 limit, but (3.19) has unfortunately other

zeros at the edges of the Brillouin zone, at p = ±π/a (in each spatial dimension).

This problem is illustrated in Fig. 3.1, where we plot the dispersion relation for both

the continuum and the näıve actions. Physically, the result is that for each spatial

dimension, we find not one but two modes which behave like a small momentum,

continuum-like fermion. Therefore in normal four dimensional lattice calculations

we end up with 24 = 16 fermions instead of one.



16

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1  0  1  2  3

E
(p

)

pa

Continuum
Naive

Figure 3.1: Dispersion relation for the continuum action and the näıve discretization,
along a momentum axis. The extra zeros at the edges of the Brillouin zone appear
as extra fermions.



17

There are multiple ways of addressing the fermion doubling problem. The

simplest approach is known as the Wilson action, and while it has fairly severe side

effects, it is still the most popular quark action for many applications. An additional

term is added to the action which gives the doublers a mass much larger than ma

so they effectively decouple from the system in the continuum limit a→ 0. The new

term is a second derivative which gives us the action

SWF = SNF − r

2
a5
∑

x

ψ̄x�ψx, (3.21)

�ψx =
1

a2

∑

µ

ψx+µ̂ − 2ψx + ψx−µ̂, (3.22)

where r is a free non-zero parameter (usually r = 1). For this action the propagator

is

G−1
W (p) = G−1

N (p) +
2r

a2

∑

µ

sin2(pµa/2) (3.23)

−→
p→0

iγµpµ +m+
ra

2

∑

µ

p2
µ (3.24)

and it has the right form for the low momentum (p ∼ 0) mode. But for the doublers,

an expansion around p̃ ≈ π/a gives us

G−1
W (p̃) = iγµpµ +m+

2r

a
+ . . . (3.25)

so as a→ 0 the mass of the doublers increases and they decouple. This can be seen

by plotting the dispersion relation for the Wilson action, shown in Fig. 3.2 for r = 1

(which should be contrasted to Fig. 3.1).

The Wilson action has O(a) discretization artifacts and thus requires fine

lattices. Additionally, it has the problematic side effect of explicitly breaking chiral

symmetry even at zero quark mass. This is not an accident, but in fact a consequence

of the Nielsen-Ninomiya no-go theorem [57], which in summary states that for a
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Figure 3.2: Dispersion relation for the continuum action and the Wilson discretiza-
tion, along a momentum axis. The Wilson action shows no extra zeros in the Brillouin
zone.
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fermionic lattice action of the general form

SF = a4
∑

m,n

ψ̄(m)D(m− n)ψ(n) (3.26)

the following four conditions can not all be met simultaneously:

(1) D(n) is local (bounded by Ce−γ|n|)

(2) D̃(p) = iγµpµ +O(ap2) for p≪ π/a. (Correct continuum limit).

(3) D̃(p) is invertible for p 6= 0. (No doublers).

(4) γ5D +Dγ5 = 0. (D is chirally symmetric).

The Wilson action respects (1)-(3) but at the price of breaking chiral symmetry.

There exist more complex actions which try to maintain properties (1)-(3) while

breaking chiral symmetry in the mildest and most controlled ways possible, at the

expense of explicit forms which are much more complicated and expensive to sim-

ulate. Most of these approaches rely on a discovery by Ginsparg and Wilson ([32])

which shows exactly how much of chiral symmetry can be preserved on the lattice.

3.4 The Lattice as a Regulator

QCD is a renormalizable quantum field theory, therefore in practical cal-

culations we must devise a suitable scheme for controlling the UV divergences. On

the lattice, the spacing a acts as a natural cutoff, as it restricts the momenta to the

range [−π
a ,

π
a ]. In this sense, lattice calculations are therefore ‘complete’, as they

require no perturbative approximations or additional renormalizations.

At this point one may ask whether the introduction of the lattice spacing

a into our calculations is an extraneous new parameter. In fact a renormalization
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group analysis shows that a and the coupling g are related by

ΛQCD = lim
a→0

1

a
e−1/2β0g2(a)[β0g

2(a)]−β1/2β2
0 (3.27)

where ΛQCD is the dynamically generated mass scale of QCD, and (β0, β1) are the

first two, scheme-independent coefficients of the β-function. In practice one specifies

only g (or β), and must later calibrate the calculation to extract the physical value

of the lattice spacing. In Sec. 3.6.1 we outline this procedure.

3.5 Simulations

3.5.1 Markov Chains and Monte Carlo Methods

The calculation of a quantity such as (3.1) on a space-time lattice with

roughly 104 points involves on the order of 4 × 104 link variables. For the SU(3)

group, each of these variables is a function of 8 real parameters (N2−1 for SU(N)),

so we need to perform roughly 320000 integrations. Even with an efficient quadrature

algorithm capable of computing these integrals accurately on a coarse 10 point grid,

the functional integral on the lattice would be a sum of roughly 10320000 terms. This

is simply impossible to perform in a finite amount of time.

The observation that most configurations in (3.1) will have a large action

and will therefore contribute very little –if at all– to the integral, points to a solution.

If instead of adding all the terms in the series we limit ourselves to a statistically

significant sample, generated with a probability distribution given by the Boltzmann

factor e−S[U ], we can obtain a good approximation to the integral in a vastly shorter

time. This is the technique known as importance sampling, and all the methods

based on this idea are collectively known as Monte Carlo methods. We will now

outline the basic ideas behind these methods and present some of the more relevant

ones to lattice calculations. A more detailed presentation can be found in [66].

Let C1, C2, . . . denote a countable set of configurations of our system. Then,



21

consider a stochastic process in which a sequence of configurations is generated such

that the transition probability for going from Ci to Cj is P (Ci → Cj) ≡ Pij . The

state of our system at any time1 is thus a random variable which depends only on the

state immediately preceding it, as long as the transition probability is independent

of the system’s past history. Such a sequence is known as a Markov chain, and there

are a number of theorems for Markov chains which provide the basis for Monte Carlo

methods.

In particular, a Markov chain is called irreducible if, starting from an arbi-

trary configuration Ci, there is a finite probability of reaching any other configuration

Cj in a finite number of steps N. That is, there is a finite N such that

P
(N)
ij =

∑

{ik}

Pii1Pi1i2 . . . PiN−1j 6= 0. (3.28)

For an irreducible chain2 it can be shown that the limit N → ∞ of (3.28)

exists:

lim
N→∞

P
(N)
ij = πj (3.29)

where {πj} are numbers which satisfy

πj =
∑

i

πiPij , (3.30)

∑

j

πj = 1 . (3.31)

Furthermore, the time average

〈O〉N =
1

N

N∑

i=1

O(Ci) (3.32)

1Time here refers to the discrete variable which indexes the configuration sequence, not to the
physical time which the equations for our system may depend on.

2With a few additional conditions, see [66] for details.
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approaches the ensemble average

〈O〉 =
∑

i

πiO(Ci) (3.33)

with a statistical uncertainty of order O(1/
√
N).

These results allow us to define for an arbitrary configuration C a finite

probability for the system to eventually reach it. This is the equilibrium probability

for C :

Peq(C) =
∑

C′

Peq(C
′)P (C ′ → C) , (3.34)

and the expectation value 〈O〉 can then be computed as

〈O〉 =
∑

C

Peq(C)O(C) (3.35)

where we’ve dropped the individual configuration subscripts.

In order to devise a calculation method based on this, we need to deter-

mine what the transition probability for our Markov process will be, so that the

expectation value (3.35) generated from the Markov sequence of states is an ap-

proximation to (3.1). One can show that a sufficient (but not necessary) condition

for a Markov process to sample the distribution exp(−S[C]) is that the transition

probability satisfies the detailed balance condition

e−S[C]P (C → C ′) = e−S[C′]P (C ′ → C) (3.36)

for every pair of configurations C and C ′.

The detailed balance condition does not uniquely specify what the transi-

tion probability must be. This freedom can be exploited to design algorithms which

can be efficient under various conditions or address specific problems of a simulation.
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We will briefly review the most common methods used in lattice QCD calculations

which, while satisfying detailed balance, try to tackle various aspects of the QCD

problem differently.

3.5.2 Overview of Methods

Heat Bath

The heat bath method is the most straightforward implementation of the

idea of importance sampling. Suppose we want to compute a one-dimensional inte-

gral

〈F 〉 =

∫ b

a
dx F (x)P (x) (3.37)

where P (x) is a properly normalized probability distribution satisfying
∫ b
a dxP (x) =

1. This problem can be recast in the form of one with a uniform distribution with

a simple change of variables. If we define y through the following boundary value

problem:

dy

dz
= P (z) (3.38)

y(a) = 0 (3.39)

y(b) = 1, (3.40)

we can then write

y(x) =

∫ x

a
dz P (z), (3.41)

and (3.37) can be written as

〈F 〉 =

∫ 1

0
dy F (x(y)) . (3.42)
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This change amounts to turning y into a uniformly distributed variable in the [0, 1]

interval. In terms of y we can now compute the expectation value 〈F 〉 through (3.42)

by simply generating uniform random numbers on that interval.

This method is straightforward conceptually, but in practice not often useful

as it requires being able to compute the change of variable integral (3.41). If that

integral can be analytically computed (which is rarely the case), the method provides

a convenient approach, but if one must resort to computing it numerically for each

value of x then it proves to be of little practical value. For such cases other methods

are in fact more appropriate.

Metropolis

This method is in principle applicable to any system, regardless of the ana-

lytical properties of the probability distribution describing it. If C is a configuration

to be updated, a new configuration C ′ is computed with a transition probability

P0(C → C ′) which only needs to satisfy the microreversibility condition

P0(C → C ′) = P0(C
′ → C). (3.43)

Once the new configuration is available, we must decide whether to update the system

to it or to keep the old one. This decision is made as follows:

(1) If e−S(C′) > e−S(C), i.e. if the new action is lower than the old one, the new

configuration C ′ is kept and the system is updated.

(2) Otherwise, a random number r uniformly distributed in [0, 1] is chosen and

the system is updated only if

r ≤ e−S(C′)

e−S(C)
(3.44)

Condition 1 allows the system to lower its action, heading towards the classical

solution. But condition 2 also takes into account quantum fluctuations which raise
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the action, albeit moderated with a probability distribution e−S(C′)/e−S(C). It is

straightforward to prove that this algorithm satisfies the detailed balance condition

(see [66] for details).

In practice, a configuration for a statistical system is updated by changing

only one variable at a time. The reason for this, which at first appears to be slower

than changing the entire system at once, is that global updates would cause in

general large changes in the action, drastically lowering the acceptance rate and

thus slowing down the algorithm. The algorithm can also slow down even for single-

variable updates, if the action depends non-locally on the coordinates (because the

calculation of e−S(C′)/e−S(C) becomes an expensive operation). This is particularly

important for lattice QCD when fermions are to be considered, and is one of the

reasons why algorithms allowing full lattice updates in one step were developed.

Molecular Dynamics

This algorithm is based on a microcanonical ensemble construction of the

partition function for a statistical system. The key idea of the method is the connec-

tion between the Euclidean path integral formulation of a quantum field theory and

the partition function for a mechanical statistical system in four spatial dimensions.

For this new system, a Hamiltonian is constructed which evolves with a new ‘time’

variable, the simulation time.

We will outline the method considering a scalar theory whose action S[φ;β]

depends on a scalar field φ and a coupling parameter β in the form

S[φ;β] = βV [φ] , (3.45)

as is the case for pure gauge theories. As always, we are interested in computing an

expectation value

〈O〉 =
1

Z

∫

DφO[φ]e−S[φ;β], (3.46)
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where

Z =

∫

Dφe−S[φ;β] . (3.47)

At this point we assume that a discrete space-time lattice has been introduced to

compute the above integrals as sums, and we will label all the degrees of freedom

through a collective index i which denotes the lattice site coordinates.

In order to cast this into the language of classical statistical mechanics,

we introduce a set of canonically conjugate momenta πi with which we define a

Hamiltonian for the system as

H[φ, π;β] =
1

2

∑

i

π2
i + V [φ], (3.48)

and a partition function

Z̄ =

∫

DφDπe−βH[φ,π]. (3.49)

With the introduction of a discrete lattice, the functional integration measure be-

comes

DφDπ =
∏

i

dφidπi, (3.50)

and we can compute 〈O〉 as

〈O〉 =
1

Z̄

∫

DφDπO[φ]e−βH[φ,π] . (3.51)

This form, while providing the value for 〈O〉 we are seeking, has the structure of a

thermal expectation value for a statistical system in contact with a heat reservoir.

At this point we can use the standard result from statistical mechanics [58]

which, in the thermodynamic limit, connects expectation values computed in the
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canonical and microcanonical ensembles:

〈O〉can (β) = 〈O〉mic (E = Ē(β)), (3.52)

where

〈O〉mic (E) =
1

Zmic(E)

∫

DφDπO[φ]δ(H[φ, π]− E), (3.53)

Zmic(E) =

∫

DφDπδ(H[φ, π] −E). (3.54)

The connection between the coupling parameter β and the energy value Ē

at which we fix microcanonical calculations can be obtained via the equipartition

theorem to be

N

2β
= 〈Tkin〉mic (Ē), (3.55)

where Tkin is the kinetic energy of the system and N is the total number of degrees

of freedom.

Now that we have rewritten our thermal expectation values as fixed-energy

ones, we make the assumption that if the motion generated by the Hamiltonian (3.48)

is ergodic, then we can integrate the equations of motion induced by it and replace

ensemble averages by time averages over the resulting phase-space trajectories on

the E = Ē energy shell.

Note that this algorithm has two key assumptions built into it, which are

in fact rather problematic:

(1) The number of degrees of freedom is infinite (the canonical-microcanonical

ensemble equivalence of expectation values is only valid in the thermody-

namic limit),

(2) The motion generated by the Hamiltonian (3.48) is ergodic.
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Furthermore, the integration of the equations of motion will necessarily introduce a

finite time-step in the calculation, which is a source of systematic errors.

These difficulties led to the development of the Hybrid Monte Carlo method.

Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) method is based on combining an ex-

tension to the Molecular Dynamics method known as the Hybrid algorithm with a

Metropolis acceptance step. The Hybrid algorithm [29] addresses problem 2 cited

above by replacing the momenta {πi} by random variables with a probability density

P ({πi}) =

(
∏

i

1√
2π

)

e−
1

2

P
i π

2
i . (3.56)

Instead of integrating the equations of motion as in the molecular dynamics method

along a single trajectory of fixed energy Ē, the integration is occasionally interrupted

and a new set of momenta distributed according to (3.56) is introduced. This injects

ergodicity into the system; however the problem of the systematic errors arising from

integrating the equations of motion with a finite time step remains.

The next refinement consists of using the phase space configurations gener-

ated as a result of the Molecular Dynamics integration (with the Hybrid stochastic

correction) as trial configurations for a Metropolis accept/reject step. If we start

with a configuration which has energy H[φ, π] and after integrating for a certain

number of time steps the configuration has energy H[φ′, π′], then the new one will

be accepted with probability

p = min{1, e−H[φ′,π′]/e−H[φ,π]} . (3.57)

Of course, since the system is conservative, if we could integrate the equations of

motion exactly the energy would be perfectly constant along any trajectory and the

new configuration would always be accepted by the Metropolis test. However, for
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any finite time step we have in general δH 6= 0, and the role of the Metropolis test is

then to remove the systematic errors while satisfying the detailed balance condition.

A detailed description of the HMC algorithm suitable for implementation

purposes can be found in [66].

3.5.3 Monte Carlo Methods for Systems with Fermions

As previously discussed, lattice calculations are often implemented using

the quenched approximation. This is done mainly because the computational cost of

not doing so is extremely high, but also because for certain problems the quenched

approximation is indeed sufficient. On the other hand, there is nothing in principle

which prevents explicitly including fermions in simulations. Since the QCD action

is quadratic in the fermionic fields, we can always integrate them out from the

exponential and include their contribution via the resulting determinant.

In order to outline how this can be done, let us begin by rewriting the full

action for Wilson fermions (3.21). After absorbing the lattice spacing into dimen-

sionless quantities, the interaction matrix is explicitly given by:

MW
ij [U ] = (mq + 4r)δij −

1

2

∑

µ

[(r − γµUi,µ)δi,j−µ + (r + γµU
†
i−µ,µ)δi,j+µ], (3.58)

so the fermionic part of the action is explicitly

SWF [U,ψ, ψ̄] =
∑

i,j,f

ψ̄fiM
W
ij [U ]ψfj , (3.59)

and the full action reads:

S[U,ψ, ψ̄] = SG[U ] + SWF [U,ψ, ψ̄]. (3.60)

Let
〈
O[U,ψ, ψ̄]

〉
be the expectation value of an operator which depends
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both on the gauge fields U and the fermionic variables (ψ, ψ̄). Its explicit form is

〈O〉 =

∫
Dψ̄DψDUO[U,ψ, ψ̄]e−S[U,ψ,ψ̄]

∫
Dψ̄DψDe−S[U,ψ,ψ̄]

. (3.61)

The quadratic form in (3.61) can be explicitly integrated for fermionic vari-

ables (represented by Grassman numbers) as

∫

Dψ̄Dψe−SW
F = (detMW )Nf , (3.62)

where Nf is the total number of active flavors. We can then write

〈O〉 =

∫
DU 〈O〉SF

e−Seff[U ]

∫
DUe−Seff[U ]

, (3.63)

with

〈O〉SF
=

∫
Dψ̄DψO[U,ψ, ψ̄]e−S

W
F [U,ψ,ψ̄]

∫
Dψ̄DψDe−SW

F [U,ψ,ψ̄]
, (3.64)

Seff = SG[U ] − ln(detMW [U ])Nf . (3.65)

With a proper choice of the Wilson parameter r, MW can be shown to be

positive definite for even Nf . This enables us to write

(
detMW [U ]

)Nf = (detQ[U ])Nf/2 , (3.66)

with

Q[U ] = (MW [U ])†MW [U ]. (3.67)

Using (3.66) we can then express (3.65) as

Seff[U ] = SG[U ] − Nf

2
ln detQ[U ]. (3.68)
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At this point suppose we try to calculate 〈O〉 with (3.63) with any algorithm

which includes a Metropolis acceptance test. If we are comparing two background

gauge field configurations U and U ′ then we will need to compute the difference in

the action Seff[U ′] − Seff[U ]. This requires computing the ratio

ρ(U,U ′) =
detQ[U ′]

detQ[U ]
. (3.69)

And therein lies the difficult problem with fermions in lattice simulations: the de-

terminant is a global quantity and Q[U ] is a large matrix, so the exact computation

of ρ(U,U ′) on anything but the smallest lattices would slow down any simulation to

a crawl, since it would have to be done at each step of the process.

A number of ideas have been proposed to address this vexing problem. Since

dynamical fermion simulations are not the focus of this thesis, we will only outline

here the general approach behind these methods. The idea is to introduce sets of

auxiliary fields (φ, φ∗), which can be used to construct approximate expressions for

detQ.

Once these auxiliary fields have been introduced, one can set up a Hybrid

Monte Carlo calculation for fermions in a manner similar to what we described in

Sec. 3.5.2. Basically, we introduce the canonical momenta πi, π
∗
i and Pl conjugate

to φi, φ
∗
i and Al respectively, where Al are the group gauge variables. This gives us

a Hamiltonian controlling the dynamics of our new statistical system in the Monte

Carlo simulation time τ :

H =
1

2

∑

l

P 2
l +

∑

i

π∗i πi + SG[U ] + SAUX [U, φ, φ∗], (3.70)

where SAUX is the contribution to the action from the auxiliary fields.

At this point, we can then follow the HMC outline presented above; more

details can be found in [66] and references therein. We should note that simulations

with dynamical fermions tax the limits of existing computer technology, and the



32

development of better algorithms is thus an active area of research.

3.6 Measurements on the Lattice

In this section we will describe how the calculations performed according

to the methods we have previously presented can be used to compute quantities of

physical interest.

3.6.1 Comparing with the Continuum

Computers deal only with pure numbers, not with physical, dimensionful

quantities. Therefore all calculations done on the lattice treat and return dimen-

sionless values. When we compute a mass m on the lattice, we are in fact obtaining

the dimensionless product m̂ = ma, where a is the lattice spacing. As discussed in

Sec. 3.4, there is an internal (renormalization-driven) connection between the cou-

pling constant β and the lattice spacing. This means that once we have numbers

coming out from a lattice calculation done at a certain value of β, we must calibrate

the calculation. This means obtaining the physical value of the lattice spacing a and

other input parameters (such as the quark masses), which in turn will determine the

scale for all other numbers extracted from the calculation.

The calibration process is performed by choosing a set of physical quantities

with known values and comparing them to their lattice values. Ideally this would

set the scale uniquely and every other quantity could then be written in MeV, but

as usual, there are problems which arise from the various approximations made on

the lattice [22]. The string tension is one observable often chosen for this calibra-

tion process, because it has a fairly clean and direct expression in terms of lattice

quantities through the measurement of the Wilson loop.

One particular difficulty of matching lattice results with physical numbers

is illustrated by Eq. (3.4). For any arbitrary operator O we are measuring (such

as the string tension) with mass dimension dO, let us write Ô(g0) to denote the
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dimensionless value measured on the lattice. If we work with the assumption that

a continuum limit exists at all, so that as a → 0 the quantities take their physical

values (once properly calibrated), then dimensional analysis tells us that

O(g0(a), a) =

(
1

a

)dO

Ô(g0) −→
a→0

Ophysical . (3.71)

For the calibration to be reliable (in the sense that the process is reasonably in-

dependent from the operator used for the calibration) we need quantities to scale

according to the above expression. In practice this only happens in a limited region

of bare couplings, since for too small g0 the physical volume itself (the total number

of lattice points is constrained by computer power) becomes too small and finite

volume errors dominate. On the other hand increasing g0 increases a and the lat-

tice becomes too coarse to accurately represent the short-range physics. The region

where the relation (3.71) is satisfied is known as the scaling window, and practical

calculations are performed within it.

3.6.2 Spectroscopy

If we believe QCD to be the correct theory of the strong interactions, then

we expect to be able to predict from it the mass spectrum of the hadrons, amongst

other things. These quantities are well measured experimentally and should always

be a first check for any lattice calculation. In fact, if lattice QCD had failed to

predict these masses satisfactorily, either the lattice approach or the very theory of

QCD itself would have come into question.

Although this thesis does not deal directly with spectroscopy issues, they

are such a basic component of the lattice approach that a few paragraphs regarding

on how they are handled are warranted. Many more details can be found in the

literature.

The basic idea behind all spectroscopy calculations is to compute the expec-
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tation value of an operator with the quantum numbers of the state one is interested

in, and then to extract its mass eigenvalue by taking advantage of the exponential

suppression of higher-energy states in the long time limit.

Let us specifically illustrate this with the problem of computing the mass

of the pion [34]. We choose as our operator of interest the fourth component of the

axial current O = A4 = ψ̄γ4γ5ψ which has a large coupling to the pion, and compute

the 2-point function 〈0|T [
∑

xO(x, t)O(o, 0)] |0〉 . In standard quantum mechanical

fashion, this correlator is the probability amplitude for the creation of a state (in

fact, all states in the spectral decomposition of O) with the quantum numbers of

the pion at point (o, 0), evolving via the QCD Hamiltonian in space time until its

annihilation at (x, t).

Because we are working in Euclidean space-time, a given eigenstate of O

with energy E has a weight e−Et. We can then write the eigenstate decomposition

〈0|T [
∑

x

O(x, t)O(o, 0)] |0〉 =
∑

n

〈0| O |n〉 〈n| O |0〉
2En

e−Ent (3.72)

where we have used the Lorentz-invariant normalization

〈n
∣
∣n′
〉

= 2Enδnn′ , (3.73)

1 =
∑

n

1

2En
|n〉 〈n| . (3.74)

Now we try to extract information about the pion at rest. The first step is to make

a zero-momentum projection so that En →Mn. This is accomplished by the spatial

integral (discrete sum on the lattice)
∑

x . Next we try to be as specific with our

construction of O as possible so that its spectral decomposition resolves only the

pion (ideally O would be exactly the quantum mechanical wavefunction of the pion).

And finally we look at the asymptotic time behavior of the correlation function,

where the higher mass states (radial excitations of the pion, three pions with total



35

J = 0, etc.) have been exponentially suppressed relative to the ground state:

〈0|T [
∑

x

O(x, t)O(o, 0)] |0〉 −→
t→∞

〈0| O |π〉 〈π| O |0〉
2Mπ

e−Mπt . (3.75)

From an exponential fit to the large t data for our 2-point function we can then

extract the mass eigenvalue we are interested in.

Let us finally mention how the above expectation value is expressed in terms

of the quantities actually computed on the lattice. We are interested in computing

〈0|T [
∑

x

O(x, t)O(o, 0)] |0〉 = 〈0|
∑

x

ψ̄(x, t)γ4γ5ψ(x, t)ψ̄(o, 0)γ4γ5ψ(o, 0) |0〉

(3.76)

which by using Wick contractions can then be written as

= 〈0|
∑

x

G−1
F Latt(0;x, t)γ4γ5G

−1
F Latt(x, t; 0)γ4γ5 |0〉 (3.77)

where G−1
F Latt is the lattice version of the Feynman quark propagator (3.20). Since

on the lattice the Dirac operator becomes a finite (if large) matrix, this propagator is

simply the inverse of the Dirac matrix, and it depends on the particular background

gauge field configuration. In practical calculations, it is this matrix inversion step

which consumes most CPU cycles, and large amounts of research effort has been

spent in finding fast, numerically stable algorithms for this inversion. Most lattice

codes today employ variants of a stabilized biconjugate gradient inverter for this

purpose.



Chapter 4

Instantons in QCD

In 1975, Belavin and collaborators [8] (reprinted in [73]) found a class of

exact, analytical solutions to the classical SU(2) Yang-Mills equations which they

called ‘pseudoparticles’. These solutions are known today as BPST instantons (or

simply instantons), and have been found to play a critical role in several aspects of

QCD.

Instantons are a peculiar feature of non-Abelian theories, and they are

fundamentally non-perturbative objects, as they involve long range structure in the

gauge fields. For this reason they are essential components of several low-energy

phenomena in QCD, such as the θ parameter, the problem of the η′ mass, chiral

symmetry breaking and confinement. The extent of their contribution to confinement

is still not fully clear and appears to be less than initially hoped 1.

In this work we will only concern ourselves with instantons in the context

of QCD. Since they are a feature of the gauge fields, instanton solutions do exist in

the SU(2) sector of the electroweak theory. However, their interplay with the Higgs

sector gives rise to complications we will not discuss here.

In this chapter we will present an overview of the physics of instantons.

For further reference, the collection [73] edited by M. Shifman is an excellent source

which contains reprints of many key original papers on the topic, including two com-

1Interestingly, it was precisely the confinement problem what initially motivated Polyakov [63]
to look at the kinds of gauge field configurations which eventually led to instantons and opened up
this field.
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prehensive reviews by Coleman [15] and by Vainshtein et. al. [81]. Bitar and Chang

[11] present a detailed study of the vacuum tunneling interpretation of instanton

solutions, and Shuryak gives in [75] a friendly discussion of hadron and instanton

physics in the spirit of G. Gamow’s famous books. For an extremely detailed dis-

cussion of most problems related to instantons, the review article [69] by Schafer

and Shuryak is probably the most comprehensive reference available today. Other

references for specific topics will be given in the text.

4.1 Topology and the QCD Vacuum

We will begin by informally presenting a few basic definitions from topology

which are necessary for understanding the way instantons appear in QCD. Let f and

g be continuous functions from a space X to a space Y . The function f is said to be

homotopic to g, denoted f ≃ g, if there exists a continuous function F : X×[0, 1] → Y

such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. Basically two functions

are homotopic if they can be continuously deformed into one another.

If we now consider the set of all possible functions betweenX and Y,modulo

homotopy equivalence, we have the set of homotopy classes [X,Y ]. This is commonly

known in the physical literature as the set of ‘topologically inequivalent transforma-

tions between X and Y .’ The set [Sn, X], where Sn is the n-dimensional sphere, is

called the nth homotopy group of X and is denoted by πn(X). The first homotopy

group, π1(X), is known as the fundamental group of X; it is the set of all possible

inequivalent mappings of the unit circle onto the space X.

Let us now present without proof a few basic results concerning homotopy

groups. It can be shown that

π1(S
1) = Z, (4.1)
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which is illustrated by the family of functions

fd(z) = zd; z ∈ C, d ∈ Z. (4.2)

These functions map the unit circle d times around itself. Any continuous function

mapping the unit circle onto itself can be continuously deformed into one of the fd

functions, for some value of d.

Furthermore, it can be shown that a relation similar to (4.1) holds for higher

dimensional spheres. In general it is true that

πk(S
k) = Z ∀k ∈ N. (4.3)

This result will be particularly useful to us in the following discussion. While we do

not prove it here, we can illustrate it for the k = 2 case with a family of functions of

the form

gd(θ, φ) = (θ, dφ), d ∈ Z (4.4)

where (θ, φ) are the usual spherical coordinate angles. Any map from S2 to itself is

homotopic to a member of this family for some value of d.

With these basic definitions behind us, let us now see why all of this is

relevant to the problem of the QCD vacuum. Even though QCD is an SU(3) gauge

theory, our discussion here will focus on SU(2) solutions; this is not a limitation

because all known instanton solutions for SU(3) are in fact SU(2) instantons em-

bedded in SU(3). The question of the existence of ‘pure’ SU(3) instantons with more

complex features than those we will discuss, remains open at this time. We will have

more to say about this issue below, once we clarify the topological structure of SU(2)

instantons.

Because of the non-Abelian character of the gauge group, the QCD vacuum
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is a very complex and interesting environment, in spite of the absence of matter fields.

The vacuum is the minimum energy state of the theory, and for pure gauge QCD

obviously the trivial Aµ(x) = 0 is such a solution. However, we can also look for non-

trivial field configurations which have finite total action and are still local minima of

the action:

δS[A]

δA
= 0, S[A] <∞. (4.5)

We can identically rewrite the gauge action as

S =
1

8g2

∫

d4x{[F aµν ∓ F̃ aµν ]
2} ± 8π2

g2
Q, (4.6)

with

Q =
1

32π2

∫

d4xF aµν(x)F̃
a
µν(x) (4.7)

and the dual field tensor given by

F̃ aµν =
1

2
ǫµναβF

a
αβ. (4.8)

With the above form, we see that in order to have a finite action, the field strength

tensor must vanish on the surface of a large sphere of radius R, faster than R−3 :

F aµν(|x| = R) −→
R→∞

0, (4.9)

which is equivalent to requiring the fields to be ‘pure gauge’ on the surface of the

large sphere:

Aµ(x) −→
|x|=R→∞

iU(x)∂µU(x)†, (4.10)
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where U(x) ∈ SU(2).

Now we look for ways of minimizing the action as written in (4.6). In this

form, it is clear that we can obtain minima with an action S ∝ |Q| if there exist field

configurations which satisfy

F aµν = ±F̃ aµν . (4.11)

We will assume for the time being that such solutions can indeed be constructed.

Now we need to consider the behavior of the quantity Q we defined above. By using

Gauss’s theorem we can rewrite the volume integral (4.7) as a surface integral:

Q =
1

32π2

∫

|x|=R
KµdSµ, (4.12)

where the field Kµ, known as the Chern-Simons current, is given by

Kµ = 2ǫµναβ(A
a
ν∂αA

a
β +

1

3
fabcAaνA

b
αA

c
β). (4.13)

This shows us that for field configurations satisfying the duality condition (4.11),

the value of the action is uniquely determined by the asymptotic properties of the

Aµ fields, and does not actually depend on their local structure. This can be proved

in detail by computing the variation of Q under changes in the Aµ; this variation

vanishes thanks to the asymptotic condition (4.9) [73].

Since we are working with pure gauge configurations, this means that ulti-

mately we are interested in understanding the asymptotic behavior of the possible

classes of gauge transformations U(x). If

U(x) −→
|x|=R→∞

1, (4.14)
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then obviously

Aµ(x) −→
|x|=R→∞

0, (4.15)

and we have a trivial configuration with Q = 0. Now the question is whether other

solutions can be found. Let us consider what happens on the surface of our sphere

of radius R in 4-d space, S3
R: we want to know what kinds of U(x) functions can

be constructed there besides the trivial identity. Using the terminology introduced

earlier, this means precisely considering the 3rd homotopy group of our group space,

π3(SU(2)). But any U ∈ SU(2) can be written as

U = A+ iσB, A2 +B2 = 1. (4.16)

This means that the group space of SU(2) is equivalent to the three dimensional

unit sphere S3, and the question we are asking is then the class of mappings:

S3 −→ S3 (4.17)

Spacetime sphere → SU(2) group space. (4.18)

In other words, we need to know what π3(S
3) is. Using (4.3), we have

π3(S
3) = Z. (4.19)

This result is of critical physical significance: it tells us that in the gauge

vacuum of SU(2), there exists an infinity of topologically inequivalent configurations

labeled by the integers, which are local minima of the action.

At this point we can obtain some physical insight into the definition of Q

given in (4.7). Q is called the topological charge, and it has been normalized to

correspond directly with the integer index which labels the configuration class. This
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is in fact no accident, as the construction of such integer invariants for topological

spaces is a standard problem of algebraic topology. Q is thus an integer which

describes the global, gauge invariant properties of the gluon field background.

The key result of Belavin et.al. in 1975 was to find an explicit solution to

(4.11) which corresponds to Q = 1, known today as the BPST instanton after the

initials of the four authors of [8]. The instanton gauge fields are given by

Aaµ(x) =
2ηaµνxν
x2 + ρ2

, (4.20)

where ρ is an arbitrary parameter which characterizes the spatial extent of the fields

(we can think of it as a ‘radius’ for the instanton). In the above we introduced the

’t Hooft symbol ηaµν

ηaµν = ǫaµν + δaνδν4 − δaµδµ4. (4.21)

The anti-instanton solution with Q = −1 can be obtained by replacing ηaµν with the

dual ’t Hooft symbol η̄aµν , given by

η̄aµν = ǫaµν − δaνδν4 + δaµδµ4. (4.22)

For these solutions the field strength is

(F aµν)
2 =

192ρ4

(x2 + ρ4)2
(4.23)

and they both have an action S = 8π2/g2, as can be checked by direct integration.

It is clear that the above argument hinges completely on the particular

connection between a manifold in physical 4-dimensional space and the group space

of SU(2). One may therefore ask whether these results can be in any way extended

to the full SU(3) of QCD. First, we note that since SU(2) is a subgroup of SU(3),
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we can always embed these SU(2) solutions in the context of full QCD. Furthermore,

one can show [13] that ultimately all mappings from S3 onto SU(N) for N > 2 can

be continuously deformed into mappings onto SU(2). This means that our analysis

based on SU(2) is indeed relevant for ‘real world’ QCD, and in fact all the results

presented in this work stem from the above SU(2) instantons. A more detailed

discussion of the connection between the dimensionality of space-time and that of

the group space can be found in [81].

The question of whether other non-trivial structures may exist in the SU(3)

vacuum remains an open one. Such structures would have to be protected by a

mechanism different to the one for the BPST instantons, but one can not exclude

them outright. In fact, current numerical evidence suggests that instantons are

not enough to account for quark confinement, and other mechanisms will have to

fulfill that role. Whether they are long-range configurations of the gauge fields

or something else altogether is at this point unknown, and the subject of current

research.

4.2 Quantum Mechanical Tunneling Revisited

In the previous section we presented the mathematical background which

justifies the existence of instantons. Now we will introduce a familiar problem from

one-dimensional quantum mechanics which provides the basis for their physical in-

terpretation.

Let us first expand a bit on the Wick rotation idea we mentioned in Sec. 3.1.

In Minkowski space, position 4-vectors are denoted xµ = (x0,x) where x0 ≡ t ∈ R

is the time coordinate. A Wick rotation is an analytical continuation of the time

coordinate made by defining

x4 ≡ τ = −ix0 = −it. (4.24)
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With this change, the scalar product becomes

x2 = xµx
µ = t2 − x2 −→

t→iτ
−(τ2 + x2) = −|xE |2.

If we now consider the Lagrangian for a classical particle in a time-independent

potential

L = T − V =
1

2

(
d2x

dt2

)

− V (x), (4.25)

and perform a Wick rotation, we obtain

L −→
t→iτ

−LE , (4.26)

with

LE =
1

2

(
d2x

dt2

)

− Ṽ (x), (4.27)

Ṽ (x) = −V (x). (4.28)

So under a Wick rotation, the mechanics of the particle is now governed in Euclidean

space by an inverted potential.

A second important consequence of the Wick rotation is that the phase fac-

tor eiS which appears in a path integral formulation of quantum mechanical problems

becomes a real, damped exponential e−SE . In virtue of (4.26), we have

iS = i

∫

Ldt −→
t→iτ

i

∫

LE(i dτ) = −
∫

LE dτ

︸ ︷︷ ︸

SE

. (4.29)

In Euclidean space, the classical solution to the equations of motion is still the

leading contribution to quantum mechanical expectation values. Variations around

it (quantum fluctuations) are in this formulation exponentially suppressed, while
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Figure 4.1: Double well potential.

in Minkowski space they tend to cancel each other out thanks to their oscillatory

character.

The above remarks are equally valid for fields, as we can see by considering

the Lagrangian density for a scalar field φ,

L =
1

2
∂µφ∂

µφ− V [φ], (4.30)

because ∂µφ∂
µφ transforms like xµx

µ under a Wick rotation:

∂µφ∂
µφ −→

t→iτ
−∂µEφ∂µEφ, (4.31)

with

∂µE =

(

∇, ∂
∂τ

)

. (4.32)

With the above in mind, let us consider the problem, familiar from one-
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Figure 4.2: Double well potential in Euclidean space.

dimensional quantum mechanics, of a particle in a double well potential of the form

V (x) = λ(x2 − η2)2, (4.33)

shown in Fig. 4.1. The classical ground state for this system is located at x = ±η, but

the quantum system can tunnel from one minimum to the other. In the absence of

tunneling, the states located at each minimum would be degenerate, but the presence

of tunneling means that the true ground state of the system has contributions from

both minima [67]. It is important to note here that tunneling is a non-perturbative

phenomenon. The energy difference between the (symmetric) ground state and the

(anti-symmetric) first excited states is [81]

E1 −E0 ∝ e−λ
1/2η3

; (4.34)

this quantity can not be expanded as a power series in λ.

Now, let us perform a Wick rotation and examine the behavior of this same

system in Euclidean space-time, where the potential becomes that of Fig. 4.2. We are
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Figure 4.3: One-dimensional instanton for the potential (4.33), centered at the origin.

looking for solutions with finite action, and obviously the trivial x(τ) = ±η satisfy

this. However, there is a class of non-trivial solutions which connect the two humps

and still have finite action: those which start at one hump as τ → −∞ and end up

in the other as τ → ∞. Since for the classical equations of motion this corresponds

to zero-energy motion, the equations can be directly integrated:

x(τ) = η tanh
[√

2λη(τ − τc)
]

, (4.35)

where τc is a free parameter. This solution, an instanton in one dimension for the

double well potential, is shown in Fig. 4.3, for τc = 0. This free parameter is called

the ‘center’ of the instanton, and the total action

S0 = S[x(τ)]inst =

∫ ∞

−∞
dτẋ2 =

2

3
η2 (4.36)

is independent of it.

We have then found, in Euclidean space-time, finite-action solutions to

the classical equations of motion which connect various local minima for the po-
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tential. These solutions are thus associated with tunneling behavior in the original

Minkowski-space problem. This is exactly the scenario we discussed previously for

the SU(2) vacuum. Here we have presented the tunneling analogy in the context of

one-dimensional quantum mechanics with an explicit potential, a situation slightly

different to that of a gauge theory. However, the fundamental physical ideas are the

same, and much easier to illustrate in our simplified model. A detailed presenta-

tion of the tunneling-instanton connection for the full SU(2) case can be found in

Ref. [11].

4.3 Instantons and Chiral Symmetry

Instantons have been very useful in understanding the problem of sponta-

neous chiral symmetry breaking in QCD. Let us write the fermionic part of the QCD

Lagrangian (2.6) for the case of two light quarks u and d :

L = ūiD/ u+ d̄iD/ d−muūu−mdd̄d. (4.37)

If mu and md are very small, we can treat them approximately as vanishing. In

this case (mu = md = 0), besides an SU(2) symmetry mixing the u and d fields, the

Lagrangian of Eq. (4.37) is symmetric under a separate pair of U(1) transformations.

This can be seen by writing the quark doublet as

ψ =






u

d




 . (4.38)

The Lagrangian (4.37) is then invariant under the global U(1) transformations UL

and UR :

ψL → ULψL, ψR → URψR, (4.39)
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where the left and right-handed fields are given by

ψL =
1

2
(1 − γ5)ψ, (4.40)

ψR =
1

2
(1 + γ5)ψ. (4.41)

We can write the currents associated with these symmetries as

jµL = ψ̄Lγ
µψL, jµR = ψ̄Rγ

µψR,

jµaL = ψ̄Lγ
µτaψL, jµaR = ψ̄Rγ

µτaψR,
(4.42)

where τa = σa/2 (a = 1, 2, 3) are the SU(2) generators. Adding the left and right-

handed currents we obtain the baryon number and isospin currents

jµ = ψ̄γµψ jµa = ψ̄γµτaψR, (4.43)

while subtracting them gives us the axial vector currents:

jµ = ψ̄γµγ5ψ jµa = ψ̄γµγ5τaψR. (4.44)

Now, in QCD if the quarks are massless, we expect the vacuum to contain

a significant number of quark-antiquark pairs, since the energy cost of creating them

is small. But these quarks must have zero total momentum and angular momentum,

which means that they must necessarily be of opposite chirality. This means that

the vacuum can be a state with a non-zero expectation value for the ψ̄ψ operator:

〈0| ψ̄ψ |0〉 = 〈0| ψ̄LψL + ψ̄RψR |0〉 6= 0. (4.45)

But if the QCD vacuum satisfies (4.45), then its symmetry is restricted to UL = UR,

less than that of the original Lagrangian. This means that we have four sponta-

neously broken symmetries associated with the four axial vector currents. From
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Goldstone’s theorem, we then expect to find four massless bosons with the quantum

numbers of these currents.

In nature the quarks are not in fact truly massless, but the u and d quarks

are light enough that we can treat their mass perturbatively, and look for light bosons

with the proper quantum numbers. In fact, the members of the pion triplet have

a mass mπ ≈ 140 MeV, and can thus be considered to be the Goldstone bosons of

spontaneous chiral symmetry breaking.

Note however that there are three pions in nature, not four. The remaining

‘light’ Goldstone boson is missing. The particle with the right quantum numbers,

the η
′
, is much heavier than the pions (mη′ ≈ 958 MeV). This is due to the fact

that the ABJ anomaly breaks the conservation of the axial current jµ5, a situation

known as the UA(1) problem. It turns out that this problem can be understood in

terms of instantons, as was shown by ’t Hooft in [79], but we will not pursue this

point any further.

Going back to the pions, we now ask, what mechanism drives the sponta-

neous breaking of chiral symmetry? The connection with instantons is given by the

Banks-Casher relation [5]:

〈0| ψ̄ψ |0〉 ∝ ρ(λ→ 0), (4.46)

where ρ(λ) is the density of eigenmodes of the Dirac operator with eigenvalue λ:

Dψ = λψ. (4.47)

It was found by ’t Hooft ([78], [79]) that the Dirac operator has exact zero modes

(λ = 0) in the presence of isolated instantons. When we have a complex vacuum

with interacting instantons and anti-instantons, these exact zero modes are broken

into conjugate near-zero pairs. This means that (4.46) is in fact a relation connecting

the instanton content of the vacuum with chiral symmetry breaking.
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This relation is extremely useful for establishing a phenomenological con-

nection for instantons, since for finite quark mass one can show that [53]

〈0| ψ̄ψ |0〉 mq

Nf
=
f2
πm

2
π

2N2
f

+O(m4
π). (4.48)

We will not cover this problem in more depth here; interested readers should

refer Diakonov’s review [28] and Nieter [56] for further background. We must note

that this issue is not currently settled, and there is ongoing research trying to estab-

lish whether the instantons are in fact fully responsible for breaking chiral symmetry,

or just part of the answer. Details on the current state of this problem can be found

in [17], [16] and references therein.

4.4 Instantons in the SU(3) Vacuum

Up to this point we have discussed the properties of isolated instantons. The

BPST instanton is a solution of the classical equations of motion, but it describes

only one object with topological charge Q = 1. On the other hand, we know from the

arguments presented above that there exist vacua with arbitrary values of Q. While

we do not have exact analytic solutions for such configurations, approximations can

be made based on the single instanton solution. If we assume that there are widely

separated instantons, we expect a simple superposition solution to be a reasonable

approximation to more complex vacua.

A model of very separated instantons is called the instanton ‘gas’ model,

and it has been found to be insufficient for accurately describing some known phe-

nomenological properties of the vacuum, such as the chiral symmetry relation (4.48).

On the other hand, a model with slightly higher density of particles, known as the

Instanton Liquid Model (ILM) has been shown to be reasonably successful in de-

scribing a number of phenomenological properties of the vacuum[69].

In 1998, Hasenfratz and Nieter ([41], [56]) performed actual measurements
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of the instanton contents for the SU(3) vacuum, and found them to be in reasonable

agreement with the ILM, as shown in Fig. 4.4.



Chapter 5

Topology on the Lattice

The measurement of quantities related to topology on a discrete lattice

presents a number of challenges, but it has been the subject of extensive study in

recent years. The main problems which need to be addressed are:

(1) How to remove random vacuum fluctuations without destroying topological

features.

(2) How to find suitable lattice representations of the continuum operators we

want to measure.

We will briefly present here the strategies developed to tackle these two issues and

extract information about topological properties from numerical simulations. We

follow and summarize here the presentations from [56], [38] and [25], where more

details can be found.

5.1 Smoothing

On the lattice, we must deal with the dominance of random vacuum fluctu-

ations which have no long-range structure. The instantons, while dynamically of cru-

cial importance, have a relatively low action content: the action of a typical vacuum

configuration is overwhelmingly due to uncorrelated fluctuations, with the instantons

contributing only a small percentage of the total action. Their importance comes, of
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course, from their long-range coherent structure1. But their smallness makes them

very difficult to detect, as they are buried under a pile of random but larger fluctu-

ations [55, see Fig. 7]. A number of methods have been developed to address this

problem. They all attempt to remove the short-range, random fluctuations while

protecting as much as possible any underlying semi-classical structure.

Based on Renormalization Group (RG) ideas, the perfect actions devel-

oped by Hasenfratz et al. [24, 23, 42, 43] provide an exact preservation of all the

classical properties of the gauge background. Perfect actions restore rotational sym-

metry, have an exact spectrum and provide scale invariant instantons, even on coarse

lattices. They appear as an ideal solution to extract topological information from

the gauge fields. The problem is that, in practice, perfect actions are prohibitively

expensive to implement for QCD.

However, the theoretical ideas behind perfect actions gave us insight into the

kind of structure that better actions need. While it may be impossible to do practical

calculations with perfect actions, we may still be able to construct approximate

algorithms capable of seeing topological structures through the noisy QCD vacuum.

The basic idea is to replace the links by averages of neighboring links. These ‘fat

links’ are able to ‘smear’ the highly local uncorrelated fluctuations without distorting

longer-ranged structures excessively.

The simplest method which can be connected to these ideas is known as

APE smearing [30, 1]. APE smearing is in fact older than the perfect action con-

struction, but today we can see it as a member of the same family of ideas. It is

based on the construction

Xµ(x) = (1 − α)Uµ(x) +
α

6

∑

ν 6=µ

[Uν(x)Uµ(x+ ν̂)Uν(x+ µ̂)†

+ Uν(x− ν̂)†Uµ(x− ν̂)Uν(x− ν̂ + µ̂)], (5.1)

1Even if we think of an instanton as a localized object, the symmetries protecting it are ultimately
global, as they are connected to the asymptotic behavior of the gauge fields.
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Figure 5.1: Paths used in building the APE links.

where Xµ(x) is called a smeared link, and the free parameter α is known as the

smearing fraction. The paths which enter (5.1) are shown in Fig. 5.1. At each step

of the process, a link Uµ(x) is replaced by the projection of the smeared link onto

the gauge group.

In [26], the Boulder group worked on a smoothing algorithm which tried

to implement all the properties of perfect actions. Unfortunately, this approached

proved to be computationally very expensive. But they found that a practical com-

promise could be obtained via a set of several carefully tuned APE steps. This

method, known as RG mapping, maintains most of the desirable scaling properties

of the original idea.

In [38], Hasenfratz and Knechtli developed a new smoothing algorithm

based on APE smearing, called HYP blocking. This method was used to explore

the finite temperature features of QCD [39, 35] and for dynamical fermion simula-

tions [51, 36, 40]. The HYP links are given by:

Vi,µ = ProjSU(3)[(1 − α1)Ui,µ +
α1

6

∑

±ν 6=µ

Ṽi,ν;µṼi+ν̂,µ;ν Ṽ
†
i+µ̂,ν;µ],

Ṽi,µ;ν = ProjSU(3)[(1 − α2)Ui,µ +
α2

4

∑

±ρ6=ν,µ

V̄i,ρ;ν µV̄i+ρ̂,µ;ρ ν V̄
†
i+µ̂,ρ;ν µ], (5.2)

V̄i,µ;ν ρ = ProjSU(3)[(1 − α3)Ui,µ +
α3

2

∑

±η 6=ρ,ν,µ

Ui,ηUi+η̂,µU
†
i+µ̂,η].

These complicated-looking forms are simply a three-level process of APE-
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b)a)

Figure 5.2: Schematic structure of HYP links in three dimensions, from Ref. [38].
In a), the fat link is built from the four double-lined staples; in b) each double-lined
link is built from two staples which extend only into the hypercubes attached to the
original link.



58

like smearing steps, each similar to (5.1). At each step the resulting links are pro-

jected back onto the SU(3) gauge group. This construction is illustrated for a three

dimensional space in Fig. 5.2, taken from Ref. [38]. The HYP algorithm has a triple

(α1, α2, α3) of parameters similar to APE’s α. One of the main strengths of this

method is its improvement of flavor symmetry breaking when used with Kogut-

Susskind fermions [38]. The αi parameters are tuned to maximize the value of the

smallest plaquette. Since flavor symmetry breaking is driven precisely by local fluc-

tuations in the gauge fields, this procedure improves the flavor symmetry properties

of the resulting action.

In our analysis of topological features, we will mainly use APE smearing,

but we will present some comparisons with HYP blocking.

There is another family of smoothing algorithms known as ‘cooling’ [9,

80, 44], which perform a local minimization of the action. The minimization tends

to remove fluctuations in the local neighborhood which have large action, but the

locality of the process protects long-range structures such as the instantons. The

process is carried over the entire lattice in what is called a sweep. The simplest

cooling algorithms do in fact have a significant impact on instantons after a limited

number of sweeps, but more sophisticated ones have been developed which protect

the instantons over hundreds of sweeps [19]. A comparison between cooling and

smearing algorithms can be found in [12].

5.2 Operators

For measuring topological properties, we have the same freedom we had

with respect to the action. Any operator which in the a → 0 limit describes a

continuum quantity is in principle an acceptable lattice description, and with this

freedom we can try to control different problems. As we know, the action of a BPST

instanton is independent of its radius ρ, but on the lattice this scale independence is

broken by the introduction of the lattice spacing a. Furthermore, this minimum scale
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Figure 5.3: Comparison of topological charge operators for a background with a
single SU(2) instanton, from Ref. [25].

means that the lattice can not resolve any structure smaller than a, so any instanton

with ρ . a will “fall through the lattice”.

A purely geometric definition [54, 61] exists which guarantees exact integers

for the total topological charge. This geometric operator is shown in as a solid

line Fig. 5.3 (from Ref. [25]) . This figure shows the topological charge of smooth,

continuum-like instantons as a function of their radius. The measurements were

done on gauge backgrounds containing a single instanton, at various values of the

instanton radius. The geometric operator can only identify instantons whose radius is

of the order of the lattice spacing, as expected, but it provides a sharp, clear signal

for the presence of those instantons it can detect. Unfortunately this operator is

computationally very expensive, and it is therefore not used in full-scale calculations.

While there is little we can do about losing very small instantons on the

lattice, the scaling issues can be dealt with in ways which are still computationally

practical. In (4.7) we defined the continuum topological charge for a gauge back-
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Table 5.1: Couplings for the algebraic topological charge operator.

Operator c1 c2

1 0.09030 0.48846

2 -0.17863 0.41270

ground. The integrand in that expression,

q(x) = F aµν(x)F̃
a
µν(x), (5.3)

is known as the topological charge density. The simplest discretization which has

the correct q(x) limit as a → 0 is the twisted plaquette consisting of the path

(x̂,ŷ,−x̂,−ŷ,ẑ, t̂,−ẑ,−t̂). As we discussed in Chapter 4, the total topological charge

Q is an integer quantity, but this näıve discretization does not in general produce

an integer value. In Fig. 5.3 the results from this operator are shown as a dashed

line. We can see that it has a very smooth profile, incapable of providing a clear

identification even of instantons with ρ ∼ 1.5a.

In [25], DeGrand et al. developed an improved operator for the measure-

ment of topological charge in SU(2) based on renormalization group ideas, which we

will use for our work. Their ‘algebraic’ charge definition is made of two operators in

two representations:

q(x) =
∑

j

c1j Tr(1 − Uj) + c2j [Tr(1 − Uj)]
2 , (5.4)

where operator 1 is the path (x̂,ŷ,ẑ,−ŷ,−x̂,t̂,x̂, −t̂,−x̂, −ẑ) and operator 2 is the

path (x̂,ŷ,ẑ,−x̂,t̂,−ẑ, x̂,−t̂,−x̂,−ŷ), summed over all permutations and reflections.

The coefficients are tuned to optimize the identification of instantons, using the

geometric operator as a reference. The actual values are given in Table 5.1.

As shown in Fig. 5.3, the algebraic operator reproduces the sharp profile of

the geometric definition fairly well. It remains simple enough to be of practical use.



Chapter 6

Finite Temperature

So far we have discussed features of QCD –such as asymptotic freedom

and confinement– at zero temperature, and laid out the framework for studying

them numerically on the lattice. At this point we turn our attention to the high

temperature regime of the theory, and in particular to some interesting effects which

are expected to be present on the lattice.

We will first motivate the subject with a brief description of the expected

features of QCD at high temperatures and then proceed to look at instantons on the

lattice under these conditions.

6.1 High Temperature QCD in the Continuum

As we have already discussed, under typical conditions we never observe

free quarks, as all color charge is confined inside the hadrons. We now ask whether

this situation persists under conditions of high temperature and/or density.

A näıve thermodynamic analysis of the quark and gluon density of states

in fact predicts a transition from a mixture of free ultra-relativistic Fermi and Bose

gases to a plasma with no distinct hadrons [33]. By equating the pressure in the gas

with the B parameter from the MIT Bag model, for two quark flavors we obtain the
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+
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+
1
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(
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)4
]

, (6.1)

illustrated in Fig. 6.1. We must note that this picture should only be considered as

having qualitative value, since the actual numbers it predicts are based on overly

simplistic assumptions.

However, the overall physical picture presented here is supported both by

analytical arguments [62] and by numerical results [27]. Table 6.1 summarizes the

key features of the two regimes of QCD, at zero chemical potential. In this work

we will not look at the µc > 0 regime, which has its own set of complications

and on which only recently some progress has begun to be made. In [52], Kogut

presents a review of the state of the art with respect to QCD at high temperature

and density. He discusses the lattice results in connection with the experimental data

which is now available from the Relativistic Heavy Ion Collider (RHIC) facility at

Brookhaven National Laboratory. At this point we do not have conclusive evidence

of the existence of the quark gluon plasma, but various experimental signatures
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Table 6.1: Comparison of QCD features at low and high temperatures.

Low T High T

Hadronic matter Quark-gluon plasma

Confined quarks and gluons Debye screening of color

Broken chiral symmetry Restored chiral symmetry

are indeed well described under such an assumption. Further work both on the

experimental data and on the lattice will be needed to understand this issue.

Under the assumption that some sort of transition does indeed exist, its ex-

act nature remains to be specified. At zero chemical potential, Pisarski and Wilczek

[62] argued that for 3 or more massless quark flavors, QCD should have a first order

transition. For Nf = 2, the exact nature of the instanton background may determine

whether the transition is of first or second order. For non-vanishing quark masses,

the transition appears to be of different types depending on the type of fermionic

action used for the simulation. Looking at staggered fermions, Aoki et al. [2] find

no evidence of a first order transition and rather a crossover behavior. This was

confirmed by Hasenfratz and Knechtli [39] using also staggered fermions but the

more sophisticated HYP gauge links. In contrast to this, Iwasaki et al. find [47] that

Wilson fermions exhibit either a first or second order transition, depending on the

number of flavors. The origin of this discrepancy is still the subject of debate and

research, since ultimately we expect the physical predictions to be independent of

the modeling tools employed.

6.2 Finite T on the Lattice

We will now discuss how finite temperature calculations are implemented

on the lattice. First of all, let us recall that in the continuum, finite temperature

field theory (in thermal equilibrium) is described by an analytical continuation of the

time coordinate of the form t → −iτ. Since this is exactly the process we followed
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to implement the lattice description of quantum field theories, the lattice already

has the basic layout to describe finite temperature. The connection is continued by

interpreting the ‘time’ direction on the lattice, τ , as the inverse temperature β = 1/T.

Finally, we note that the partition function of a thermodynamic system is

given by

Z = Tr e−H/T . (6.2)

This trace can be obtained on the lattice by requiring periodic boundary conditions

on the gauge fields and antiperiodic boundary conditions on the fermion fields.

The connection between time and inverse temperature is made in practice

by using lattices which are shorter in the fourth direction, which represents time in

the zero-temperature case. This can be understood by considering that the spatial

directions represent an infinite volume (in principle), while at finite temperature,

β ∼ τ is an explicitly finite quantity.

We must stress that we are now considering an equilibrium system at finite

temperature, so there is no real time variable any more. It is important to remember

this fact as the literature often uses the ’time direction’ term to refer casually to

the fourth dimension, under the understanding that there is no time evolution being

studied here, only equilibrium thermodynamics.

The topic of lattice theories at finite T is discussed in detail in presentations

by DeTar [27] and Karsch [49]. For recent reviews of the current state of lattice

thermodynamics, in addition to the Karsch reference, we refer the reader to Refs.

[50, 31].

6.3 Finite T Effects on Instantons

Now we turn our attention to the effects we expect to see in the structure

of instantons at finite temperature. The key idea we will exploit is based on the
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realization [69, Sec. IV.A.2] that we can interpret the propagation of quarks in the

QCD vacuum as a process of hopping from instantons (I) to anti-instantons (A). This

process in turn induces an effective attractive interaction between the instantons

and the anti-instantons, which we expect to play a significant role in dynamical

simulations. We will now outline Shuryak’s argument.

First of all, let us recall that the Dirac operator has exact fermionic zero

modes in the presence of an (anti)-instanton, and that these zero modes are of

(negative) positive chirality. The basic idea when considering the fermionic instanton

interaction is to split the Dirac spectrum into quasi-zero modes (associated with I-A

pairs), linear combinations of the zero modes of the individual isolated instantons,

and non-zero modes. In the basis spanned by the zero modes, we can write the Dirac

operator as

iD/ =






0 TIA

TIA 0




 , (6.3)

where the overlap matrix elements TIA are defined as

TIA =

∫

d4xψ†
0,I(x− zI)iD/ ψ0,A(x− zA). (6.4)

Here, ψ0,I(x− zI) is a fermionic zero mode associated with an instanton with center

at zI . This matrix element has the structure of a hopping amplitude from one pseudo-

particle to another. It can be written as two quark-instanton vertices connected by a

propagator, ψ†
0,IiD/ (iD/ )−1iD/ ψ0,A. The matrix elements TII and TAA due to pseudo-

particles of identical topological charge vanish due to the chirality of their associated

zero modes. The effective interaction resulting from these modes is attractive.
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Figure 6.2: At T = 0 the net topological charge vanishes as mq → 0. Likely mech-
anisms for this are the formation of tight I-A pairs or screening in clouds of net
vanishing charge.
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The topological susceptibility χ is defined as

χ =
1

V

〈
Q2
〉
, (6.5)

where V is the lattice volume. One can show [37] that in the presence of dynamical

quarks χ is given by

χ =
〈
ψ̄ψ
〉 mq

N2
f

+O(m4
π) =

f2
πm

2
π

4Nf
+O(m4

π). (6.6)

For dynamical configurations at zero temperature, as mq → 0 we then find that

〈Q〉 → 0. The two most likely mechanisms for this to occur are the formation of tight

instanton–anti-instanton (IA) pairs or the screening of net charge, as illustrated in

Fig. 6.2. In [37], Hasenfratz considered these two scenarios and found evidence for

the formation of pairs. The present work can be considered a continuation of this

investigation which tries to probe the finite temperature regime.

At finite temperature, the fermionic interaction we have just described re-

mains a key factor in shaping the vacuum. But the anisotropy of the space-time

lattice introduces new elements into the problem. First of all, let us look at the

structure of fermionic propagators at finite temperature. At finite T the free mass-

less fermion propagator in the spatial direction is given by [69]

ST (r, 0) =
i−→γ · −→r
2π2r4

ze−z
[
(z + 1) + (z − 1)e−2z

(1 + e−2z)2

]

(6.7)

where z = πrT , and in the τ direction by

ST (0, τ) =
iγ4

2π2τ3

y3

2

1 + cos2(y)

sin3(y)
(6.8)

where y = πτT . These propagators are both shown in Fig. 6.3.

We see that propagators for fermions are exponentially suppressed in the
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spatial directions, relative to the time direction. This difference in the fermion prop-

agators, in accordance to our picture of fermion-induced interactions we described

earlier, should manifest itself also in the behavior of the instantons. And indeed, if

we look at the TIA overlap matrix elements at finite T, we find that it can be written

as [77]

TIA(x) = af1(x) + bf2(x), (6.9)

where a and b are constants whose specific form need not concern us here. The

asymptotic forms for the fi functions can be computed in the high temperature limit

as:

fas
1 = i

π2

β
sin

(
πτ

β

)

exp

(

−πr
β

)

, (6.10)

fas
2 = i

π2

β
cos

(
πτ

β

)

exp

(

−πr
β

)

. (6.11)

From these forms we see that at high temperatures, the TIA elements are

strongly anisotropic. They display exponential suppression in the spatial directions

while maintaining periodicity in the temporal direction. Because of this, and keep-

ing in mind that the background gauge fields are periodic themselves in the time

direction, we expect to see a strong anisotropy in the vacuum structure at finite

temperature. We can interpret this effect by considering the interaction between

any (anti)instanton and its ‘image’ charge which occurs through the time direction

in virtue of the periodicity of the boundary conditions. This is illustrated in Fig. 6.4.

Now, we must note that these effects are not expected to appear in quenched

simulations. The instanton structure depends critically on the existence of virtual

quark-antiquark pairs which appear from the gauge vacuum. These virtual pairs es-

tablish the attractive interactions between instantons and anti-instantons and they

are absent in quenched simulations. In the pure gauge case, we expect to see some-



70

Figure 6.4: The quark-induced interaction picture for the instanton polarization
effect at the phase transition.
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thing similar to what is shown in Fig. 6.5, with no polarization structure in the

temporal direction.

6.4 Previous Work on Pair Formation

The issue of instanton pair formation and polarization has been studied

in the past, and we will summarize the existing work on this problem. The oldest

proposals come from Ilgenfritz and Shuryak [46, 45], who first introduced the idea

that a quark-induced interaction between instantons could be a driving factor for

the chiral phase transition. Their work relied on approximate expressions for the

instanton partition function and not on direct lattice simulations.

In [76], Shuryak and Velkovsky used Partially Conserved Axial Current

(PCAC) methods to obtain a strict result concerning instanton densities as a function

of temperature. This result gave strength to the idea of instanton pairing at finite

temperatures as opposed to a disappearance of the instantons altogether (which

could be another mechanism explaining chiral restoration at high T ).

In [70], Schäfer found strong evidence of the polarization effect by simu-

lating the statistical mechanics of a single IA pair as a function of temperature.

However, for this idea to be validated it needs to be studied in the context of full

lattice simulations, and this is the path we follow in our work. Schäfer and Shuryak

visited the problem in [68], also performing numerical simulations of the statistical

mechanics of an instanton model. They identified clear evidence of polarized pair

formation at finite temperature, as seen in Fig. 10 of their work. We must emphasize

that this was not done in the context of a full dynamical lattice simulation, which is

a much noisier environment than that of a controlled instanton-only model.

In [83, 84], Velkovsky and Shuryak performed a very detailed analytical

study of the instanton interactions and the resulting structure at temperatures close

to Tc. Their results again are in strong support of pair formation as a key mechanism

of the chiral transition, and their analysis of the fermionic-induced interactions, while



72

Figure 6.5: Around the phase transition, we expect a difference between quenched
and dynamical simulations, induced by the virtual quarks.
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far more detailed than what we have presented here, supports the overall physical

picture we gave.

After all this evidence accumulated in support of the pair formation mech-

anism discussed here, Hasenfratz [37] performed the first direct measurements on

dynamical lattice simulations. She analyzed the spatial structure of the topological

charge density two-point correlator

c(x) =
1

V

∫

d4x′ q(x′)q(x′ + x), (6.12)

comparing pure gauge SU(3) configurations against full QCD ones, at zero temper-

ature. According to the picture we’ve discussed, she expected to find a significant

difference between the two cases, even at T = 0. She found that the dynamical simu-

lations exhibited a much stronger degree of instanton pairing than the quenched ones.

The present work continues this investigation by looking at the finite temperature

structure, where we expect to find signatures of these same effects.



Chapter 7

Topological Charge Correlation Analysis

In this chapter will study the topological structure of the QCD vacuum by

measuring on the lattice the correlation function

c(x) =
1

V

∫

d4x′ q(x′)q(x′ + x) (7.1)

where q(x) is the topological charge density. We are specifically looking for the effects

of working at finite temperature, which should manifest themselves as a dependence

of c(x) on the fourth coordinate. This fourth coordinate will be henceforth labelled

t, but which as we’ve discussed, it does not represent physical time. For the sake

of brevity we may call it in our discussion the ‘time’ coordinate or direction, but

it should be clear by this point that this terminology does not in any way imply a

dynamical process: we are only looking at equilibrium thermodynamics.

In order to study this effect, we will perform averages of c(x) over the spatial

coordinates. If we write the four-vector x as x = (r, t) and r = |r| where r ∈ R
3,

after averaging the c(x) data over all orientations of r we will be left with correlation

information of the form c(r, t) where we will try to find a signal for temperature-

induced effects on the topological structure.

We will begin by taking a brief look at c(r, t) in a set of finite-temperature

quenched configurations as a first reference, and will then proceed to study in detail

a large set of dynamical configurations.
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Table 7.1: Dataset for pure gauge configurations. All lattices of dimension 163 × 8.

β APE Total

5.90 24, 36, 48 100

6.00 24, 36, 48 100

6.10 24, 36, 48 100

7.1 Lattices Processed

For this project, we looked at a large set of configurations, available from the

publicly available archive known as the Gauge Connection (http://qcd.nersc.gov).

We studied a set of 163×8 quenched lattices as a reference, and used the large 243×12,

Nf = 2 dataset produced by the MILC collaboration for a detailed thermodynamic

study performed in 1996 [10].

Table 7.1 lists the quenched dataset used, and the levels of APE blocking

performed on it. Similarly, Table 7.2 shows the size of our dynamical dataset, along

with the levels of both APE and HYP blocking performed. It is necessary to smear

the configurations in order to extract topological information from them, but we

have monitored the effects of smearing to make sure that the physically relevant

information is not lost in the process. This is discussed in more detail in sections 7.4

and 7.5.

These lattices make up the complete set available at the Gauge Connection

Table 7.2: Dataset for dynamical configurations. All lattices of dimension 243 × 12.
Numbers in parentheses indicate the number of processed lattices at a given blocking
level, when different from the total available data set for that mass and β value.

mq β APE HYP Total

5.65 24, 36, 48 2,3,4 149
0.008 5.725 24, 36, 48 2, 3, 4, 6, 8 129

5.85 6, 9, 12, 18, 24, 36, 48 2, 3, 4, 6, 8 148

5.70 24, 30 (23) 2,3,4 241
0.016 5.75 24 2,3,4 253

5.80 24, 30 (48) 2,3,4 249
5.85 24 N/A 165
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archive, and the processing of the set (both quenched and dynamical) took sev-

eral months of processing on multiple workstations belonging to the Colorado High

Energy Group.

Quark mass values, here and in the rest of this chapter, are given in dimen-

sionless form. A dimensionful value is obtained by rescaling with the lattice spacing:

mphys
q = munitless

q /a. In the following we will simply write mq for the unitless values.

The dynamical lattices (which we will focus on) have a physical lattice

spacing a ≈ 0.1 fm. In [10], Bernard et al. found signals of a transition as a weak

crossover. They combined an analysis of several observables (Polyakov loop,
〈
ψ̄ψ
〉
,

a fuzzy loop, baryon susceptibility, induced quark number and chiral susceptibility)

to pinpoint its location. Their conclusion is that for mq = 0.008 the crossover is

located in the β = 5.65−5.70 range and for mq = 0.016 in the β = 5.75−5.85 range.

7.2 Finite Temperature Quenched Configurations

Our first step will be to study the behavior of c(r, t) for quenched config-

urations. This will be useful as a reference point to contrast our findings with the

dynamical lattices.

Figure 7.1 shows the results of our measurements for the entire quenched

dataset. We see that, within the statistical uncertainty, there is no measurable differ-

ence between the various t values. Even though the lattices are strongly anisotropic,

the topological structure itself does not manifest this anisotropy.

This first observation is in agreement with the scenario we have described in

Chapter 6. The absence of virtual quark-antiquark pairs removes the mechanism for

inducing anisotropy in the topology. This does not mean that no finite temperature

physics is present in quenched simulations, but it does indicate that there will be

significant limitations when studying phenomena strongly connected to topological

effects.
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Figure 7.1: Plots of c(r, t) for the pure gauge configurations. All lattices were blocked
24 APE steps. The column on the right is a detail of the x = [5, 12] region.
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7.3 Directly Looking at Dynamical Configurations

Before showing our correlation measurements for the dynamical configura-

tions, let us first take a look at the lattices themselves. This will be an instructive

exercise to perform, as we will be able to see that the intuitive picture we have

previously discussed is a rather strong idealization.

Schäfer and Shuryak [68] present figures with a very clearly organized struc-

ture of instanton-anti-instanton pairs polarized in the time direction. However, we

must keep in mind that this work was based on a hand-constructed model of inter-

acting instantons, and it is not a direct measurement of quantities in a full QCD

calculation. Looking at such an environment shows a far more complex structure for

the gauge background.

We will study the topological charge density directly, by looking at a few

configurations. We must emphasize that a direct visual study of a handful of config-

urations can not be used to extract any quantitative information, given the nature

of a Monte Carlo calculation. On the other hand, it can be very useful for gaining

insights into what the fields we are interested in actually look like. Here we will only

present images for a few lattices chosen as typical representatives of the dataset after

having looked at many of them.

On a typical lattice after 24 APE steps, the topological charge density has

a distribution such as is shown in Figure 7.2, nearly symmetrical about the origin.

In order to be able to process many lattices efficiently we clipped the data to a

symmetric range. We then computed isosurfaces of constant topological charge at

32% and 68% of the full range of values.

Figure 7.3 shows1 the resulting isosurfaces for lattice 7042. The various

1In the next chapter we will present some details about the tools used for these visualizations.
2This lattice is a typical representative of the features present in all of the configurations studied.

We will also use a few other lattices for visualization purposes. They were all chosen because they
offer clearly visible topological structures, but are in no way fundamentally different from any other
lattice in our entire sample.
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Figure 7.2: Distribution of topological charge density for lattice 704, after 24 steps
of APE blocking.
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Figure 7.3: Topological charge density isosurfaces (lattice 704). mq = 0.008, β =
5.85, 24 APE steps. Three-dimensional slices taken at x = 0, 4, 8, 12, 16, 20.
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Figure 7.4: Topological charge density isosurfaces (lattice 1304). mq = 0.008, β =
5.85, 24 APE steps. Three-dimensional slices taken at x = 0, 4, 8, 12, 16, 20.



82

Figure 7.5: Topological charge density isosurfaces (lattice 1600). mq = 0.008, β =
5.85, 24 APE steps. Three-dimensional slices taken at x = 0, 4, 8, 12, 16, 20.
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sub-figures present three-dimensional slices of the full four-dimensional lattice taken

at different values of the x coordinate, so the three axes displayed are y, z and t.

Figures 7.4 and 7.5 show the same information for lattices 1304 and 1600 respectively.

As we can see in these figures, the real environment of a full QCD calcu-

lation is a far noisier and complex one than the schematic scenario we described in

Chapter 6. First of all, we must remember that the BPST instanton is a solution

for an isolated object in empty space, so the configurations we can actually find in

a volume full of fluctuations only approximate the instanton. Furthermore, while

the instantons are indeed minimum action solutions, there is no analytical result

telling us that they are necessarily the only type of gauge structure possible. In fact

we expect them to coexist with many other gauge structures driven by quantum

fluctuations.

While we can not extract any quantitative information from these figures,

they should serve as a caution against trusting too blindly the comfortable scenarios

we described previously, and which have been used in the literature. In particular,

after looking directly at many configurations we can state that we do not see, in

any individual lattice, a structure of neatly aligned pairs polarized in the vertical

direction. Of course, this does not mean that a statistically significant effect is not

present, and we will now proceed to analyze the correlation results. But we do expect

it to be a somewhat weak effect at best, since no sharp pair formation appears visible

to the ‘naked eye’ in our dataset.

7.4 Comparison of APE and HYP blocking

We now turn our attention to the measurement of c(r, t) on our dynamical

lattices. As we have discussed before, we have a choice of algorithms for eliminating

the random fluctuations which would otherwise swamp out most of the topology

signal. We will concentrate on comparing APE and HYP blocking.

Since HYP blocking is essentially built from three APE levels with tunable
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Figure 7.6: Comparison of APE and HYP blocking. The left column shows the effect
of 6, 12 and 24 APE steps (top to bottom). The right column shows 2, 3 and 4 HYP
steps.
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parameters, we roughly expect to find a three-to-one correspondence between APE

and HYP blocked lattices. Figure 7.6 shows in parallel the results of blocking a

lattice repeatedly (6, 12 and 34 APE steps vs. 2, 3 and 4 HYP steps). We can

see that while the two processes do not yield exactly identical results, the overall

structure of both is very similar.

In order to guarantee that this is not a particular feature of an individual

lattice we must look at the entire dataset. Figures 7.7 and 7.8 show the results of

both types of blocking on the topological correlator, as measured for all 148 lattices

with mq = 0.008, β = 5.85.

From this we can safely conclude that, for our purposes of studying topo-

logical charge correlation, both algorithms provide equal results. This doesn’t mean

that they are identical in all respects, as the HYP blocking is particularly useful for

studying flavor symmetry breaking issues. But for the problem we are interested in

we can work with either of them.

Since we had completed the APE runs first, we made the decision to use

APE blocking for the rest of the project.

7.5 The process of APE blocking

Having settled on the use of APE blocking, we must now choose how many

steps to perform on our configurations before attempting to extract any conclusions.

Again, let us first get a feel for how the blocking process affects a given configuration.

Figure 7.9 shows the results of performing 6, 9, 12, 18, 24 and 36 APE steps

on a particular configuration. We can see how initially what we have is a large amount

of small-scale noise with no discernible long-range structures. As the process removes

these short-range fluctuations, larger features begin to appear. While numerically

not identical, after reaching 18 APE steps the larger structures appear reasonably

stable with most of the short-range noise removed.

Before making a decision we must however confirm the above picture with
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Figure 7.7: Comparison of APE and HYP blocking formq = 0.008, β = 5.85 lattices.
Only the x = [5, 12] region is shown.
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Figure 7.8: Comparison of APE and HYP blocking, continued.
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Figure 7.9: APE process shown for the x = 0 slice of lattice 1600 (mq = 0.008, β =
5.85). From left to right and top to bottom, 6, 9, 12, 18, 24 and 36 APE steps shown.
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Figure 7.10: Effects of APE blocking on c(r, t), shown for the full mq = 0.008, β =
5.85 set of configurations. The plots corresponding to 6, 9 and 12 APE steps are
taken from Fig. 7.7. Those for 18 and 24 steps are from Fig. 7.8. They are reproduced
here in one figure to show the whole APE process.
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the complete set of lattices. Figure 7.9 shows the effects of APE blocking on c(r, t)

for all the mq = 0.008, β = 5.85 lattices. Similar results are obtained for all other

mq and β values.

We see from this that as we progressively remove all of the short-range noise,

a time-dependent signal begins to appear. While the broad qualitative features of

the three graphs at APE 18, 24 and 36 steps are similar, we chose to use 24 steps for

the rest of the study. It appears as a reasonable balance between having removed

most of the short-range fluctuations and not distorting too much the topology.

7.6 Correlation Measurements at 24 APE Steps

Having settled on using 24 APE blocking steps for our analysis, we proceed

to measure the topological correlator c(r, t) on the entire dataset.

Figure 7.11 shows the c(r, t) results (where x =
√
r2 + t2) for all β values

with mq = 0.008 and 24 APE steps. This should be compared to Fig. 7.1 with

the same measurements performed on the set of quenched configurations. We im-

mediately see that there is indeed a qualitatively significant difference between the

two scenarios. The negative dip in c(x) at larger distances can be attributed to a

correlation between objects of opposite topological charge.

Figures 7.12 and 7.13 show the results of performing the same measurements

for the mq = 0.016 dataset, with results qualitatively similar to those at the lighter

quark mass.

The quenched configurations show essentially no negative correlation at all,

which indicates a statistically vanishing pairing of oppositely charged objects, as one

would expect in the absence of dynamical fermions to mediate their interactions.

Furthermore, in these plots we see that the negative correlation is not only

present, but also anisotropic. The higher time slices show larger negative values,

which fits nicely into our intuitive model of pairing in the temporal direction.

Before making any direct conclusions, however, we must take into account
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Figure 7.11: Topological correlator for all β values with mq = 0.008 and 24 APE
steps. The second column shows a detail of the x = [5, 12] region.
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Figure 7.12: Topological correlator for all β values with mq = 0.016 and 24 APE
steps.
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Figure 7.13: Topological correlator for mq = 0.016, continued.
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the periodicity of the lattice. Since the boundary conditions on the gauge fields are

periodic, we in fact have an overcounting which becomes fairly significant for the

higher time-slices. We now turn our attention to this issue before trying to make

any conclusions about the presence of an anisotropy in these measurements.

Note however that the significant pairing correlation, in contrast to the

behavior observed in for the quenched configurations, is not affected by the over-

counting.

7.7 Addressing the Effects of Periodicity

In order to correctly establish whether there is a statistically significant

anisotropy in the topological correlation measurements, we must control the effects

of overcounting through the lattice periodicity.

Since at t = Nt/2 the overcounting is exactly a factor of 2, we should

compare the t = 0 data against the t = Nt data, divided by 2. Only if this comparison

shows a statistically significant difference can we make a valid conclusion about the

presence of anisotropy in the dynamical configurations.

Figure 7.14 shows the results of this process for the mq = 0.008 at all β

values. We can see that in fact, for values of β above the estimated crossover, we have

indeed a statistically significant effect. For smaller β the pair correlation remains

present, but we can not claim a significant anisotropy, as most of the apparent effect

previously seen can be accounted for as an overcounting artifact.

Figure 7.15 shows the corresponding results for mq = 0.016. It is not

completely clear to us why the apparent increase and later decrease of the effect for

the mq = 0.016 data, but we will comment a bit on this in the next section after we

try to quantify this effect better.

From these results we can conclude that there is a definite anisotropic pair-

ing of instantons and anti-instantons, in agreement with the Shuryak picture. We

will now try to quantify this effect by using a simple model for the pair distribution.
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Figure 7.14: Comparison of the t = 0 data with the t = 6 data divided by 2, for
mq = 0.008 at all β values.
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Figure 7.15: Comparison of the t = 0 data with the t = 6 data divided by 2, for
mq = 0.016 at all β values.
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7.8 Simple Pairing Model

At this point we have seen statistically convincing evidence of an anisotropic

negative correlation in the topological charge density of dynamical configurations,

which is not present for quenched ones. Intuitively this can be interpreted as the

effect of pairing of regions with opposite topological charge. In order to try to quan-

tify this effect better, we will use a simple model of randomly distributed instantons

and I-A pairs to describe c(x), following the lines of [37].

We will model the charge distribution as a collection of separate instantons

and anti-instantons, whose field strength (squared) is given by

F 2
µν(x; ρ) = Fµν(x; ρ)F

µν(x; ρ) =
192ρ4

(x2 + ρ2)4
(7.2)

where ρ is the “radius” of the pseudo-particle, a parameter which characterizes the

spatial extent of the fields. For a single particle this leads to the charge density

q0(x; ρ) =
1

32π2
F 2
µν(x; ρ) =

6

π2

ρ4

(x2 + ρ2)4
. (7.3)

from which we can compute explicitly the single-particle correlation which will be

our basic building block as

c0(x; ρ) =
1

V

∫

d4x′ q0(x
′)q0(x

′ + x) (7.4)

With a little algebra this becomes

c0(z; ρ) =
1

V

36

π4ρ4
ω(q) (7.5)

where the parameter q is defined as

q =
z

2ρ
(7.6)
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and the function ω(q) is defined through the integral

ω(q) =

∫

d4y
{
[(y − q)2 + 1][(y + q) + 1]

}−4
. (7.7)

The spherical coordinates (r, θ1, θ2, φ) in four dimensions are defined through

the transformation equations







x = r sin θ2 sin θ1 cosφ

y = r sin θ2 sin θ1 sinφ

z = r sin θ2 cos θ1

t = r cos θ2

(7.8)

With these, the 3-d angular integral can be performed explicitly and the

remaining expression, which will have to be evaluated numerically, is

ω(q) =
π2

210q8

∫ ∞

0
dy

1

y5

5 − 12g(y, q) + 8g2(y, q)

g7/2(y, q) [g(y, q) − 1]5/2
(7.9)

with the function g(y, q) being

g(y, q) =

(
y2 + q2 + 1

2yq

)2

. (7.10)

Now, if we are to model the topological charge density on the lattice as a col-

lection of N0 reasonably well separated instantons and Np instanton–anti-instanton

(IA) pairs, we can write the charge correlator as

c(x) = N0c0(x) −Npcp(x), (7.11)

where cp(x) is a function representing the correlation for an IA pair. If we had a
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charge distribution consisting of a single pair separated by a four-vector d,

q(x) = q0(x) − q0(x+ d), (7.12)

then

c1p(x) = 2c0(x) − c0(x+ d) − c0(x− d). (7.13)

Since in any given lattice we expect to find many randomly oriented pairs, we must

then average this pair correlator over all possible orientations of d. Noting that

〈c0(x+ d)〉d = 〈c0(x− d)〉d , (7.14)

we can write the direction-averaged pair correlator as

cp(x) = 2 [c0(x) − 〈c0(x+ d)〉d] . (7.15)

With this form we can then use the following form to model our correlation

measurements:

c(x) = N0c0(x) −Npcp(x) = nac0(x) + nbc
av
0 (x), (7.16)

where

cav0 (x) = 〈c0(x+ d)〉d , (7.17)

N0 = na + nb, (7.18)

Np =
nb
2
. (7.19)

The average cav0 (x) can be computed from the above form of c0(x) by integrating
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over all orientations of d, and is given by

cav0 (x; ρ, d) =
288

π5V ρ2xd

∫ |d+x|
2ρ

|d−x|
2ρ

dy y ω(y)

√

1 − 4ρ2y2 − d2 − x2

2xd
. (7.20)

7.9 Fitting the Correlation Data

When attempting to use Eq. (7.16), we must note the fact that the t = 6

data lacks information about the close distances, and it is therefore impossible to

reliably obtain N0 and ρ from it. The process we used was then to fit the t = 0 data

to (7.16), and using the values of (N0, ρ) obtained from this, fit the t = 6 (suitably

rescaled by a factor of 2) data.

The results of this process are shown in Table 7.3. The pairing fraction fp,

defined as

fp =
2Np

N0
, (7.21)

represents the fraction of objects on the lattice which are forming IA pairs.

The results of these fits are shown in Figure 7.16 for the mq = 0.008 con-

figurations, and in Figures 7.17 and 7.18 for the mq = 0.016 set. We can indeed

obtain a fairly good description of our data using this model, as can be seen from

these figures.

In Table 7.4 we have computed the ratio of pairing fractions between the

t = 6 and the t = 0 data for all configurations. This ratio is an indicator of how

strongly the pairing effect changes with respect to the time slice considered. These

results are shown in Figure 7.19, along with the estimated crossover boundaries.

We observe an increase in the anisotropy of the pairing for the configurations

which are well above the crossover. The effect is marginally significant for the mq =

0.008 case, as we had expected already from both the correlation data and our

inspection of the configurations themselves.



101

Table 7.3: Fit results using Eq. (7.16). The t = 6 data has been rescaled by a factor
of 2 before fitting it.

mq β t ρ d N0 Np fp

5.65 0 2.53 ± 0.05 4.4 ± 0.4 15 ± 2 1.0 ± 0.2 0.13 ± 0.03
6 4.5 ± 1 1.2 ± 0.2 0.16 ± 0.03

0.008 5.725 0 2.56 ± 0.01 5.3 ± 0.2 7.9 ± 0.2 0.70 ± 0.06 0.18 ± 0.02
6 5.56 ± 0.05 0.66 ± 0.06 0.17 ± 0.02

5.85 0 2.90 ± 0.05 4.26 ± 0.02 5.9 ± 0.4 0.76 ± 0.08 0.26 ± 0.03
6 4.08 ± 0.04 0.98 ± 0.04 0.33 ± 0.03

5.70 0 2.58 ± 0.01 4.94 ± 0.15 12.22 ± 0.04 0.87 ± 0.03 0.142 ± 0.005
6 5.4 ± 0.2 0.76 ± 0.06 0.125 ± 0.010

5.75 0 2.76 ± 0.04 4.3 ± 0.2 9.0 ± 0.3 0.88 ± 0.02 0.196 ± 0.008
0.016 6 5.0 ± 0.2 0.89 ± 0.05 0.198 ± 0.013

5.80 0 2.79 ± 0.08 4.5 ± 0.4 7.2 ± 0.9 0.70 ± 0.13 0.194 ± 0.04
6 5.3 ± 0.7 0.56 ± 0.12 0.156 ± 0.04

5.85 0 2.87 ± 0.06 4.4 ± 0.2 6.1 ± 0.3 0.74 ± 0.08 0.24 ± 0.03
6 4.14 ± 0.14 0.95 ± 0.14 0.31 ± 0.05
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Figure 7.16: Data fit to Eq. (7.16) for the mq = 0.008 configurations, with the t = 6
data rescaled by a factor of 2.
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Figure 7.17: Data fit to Eq. (7.16) for the mq = 0.016 configurations, with the t = 6
data rescaled by a factor of 2.
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Figure 7.18: Data fit to Eq. (7.16) for the mq = 0.016 configurations, continued.
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Table 7.4: Ratio of pairing fractions between the t = 6 and the t = 0 data for all
configurations.

mq β fp6/fp0

5.65 1.2 ± 0.4
0.008 5.725 0.94 ± 0.12

5.85 1.3 ± 0.2

5.70 0.88 ± 0.07
0.016 5.75 1.01 ± 0.08

5.80 0.8 ± 0.3
5.85 1.3 ± 0.3

The puzzling behavior shown by the β = 5.80 data at mq = 0.016, which we

discussed before, may be caused by correlation artifacts of the original dataset. In

Table 7.5 we present the results for the total charge 〈Q〉 ,
〈
Q2
〉

and the susceptibility

〈χ〉1/4 . The fact that we find repeated occurrences of 〈Q〉 6= 0 suggests that these

lattices may have been poorly decorrelated with respect to the topological back-

ground. Because the topological properties of the background depend on long-range

structures, in general their autocorrelation times are much longer than those of other

observables. This issue is currently under investigation.
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Table 7.5: Topological charge and susceptibility for all the lattices analyzed. The
lattice spacing is shown and used to convert the susceptibility to physical units.

mq β a (fm) 〈Q〉
〈
Q2
〉
/V × 108 〈χ〉1/4 × 102 GeV

0.008 5.65 0.112 −1.61 ± 0.18 15.9 ± 0.4 3.52 ± 0.02

5.725 0.099 0.23 ± 0.11 7.72 ± 0.20 3.32 ± 0.02

5.85 0.093 0.00 ± 0.01 3.12 ± 0.05 2.82 ± 0.01

0.016 5.70 0.118 0.20 ± 0.15 12.4 ± 0.2 3.14 ± 0.01

5.75 0.116 −0.19 ± 0.09 6.28 ± 0.14 2.69 ± 0.02

5.80 0.114 0.65 ± 0.07 4.82 ± 0.12 2.57 ± 0.02

5.85 0.111 0.39 ± 0.04 3.44 ± 0.05 2.42 ± 0.01



Chapter 8

Visualization of Lattice Quantities

Because lattice calculations are done via Monte Carlo methods, in practice

one must collect aggregate data from many configurations and for many purposes

regular two and three dimensional plotting programs are sufficient for looking at

the results. But as we have seen in this project, it may be useful to be able to

directly study the raw lattice data, as it may provide first hand evidence of the

actual structure of the lattice itself. In the previous chapter we used this kind of

information to guide our analysis of the topological structure and to contrast direct

observations against the näıve expectations from simple models. In this chapter we

will describe these tools and present some of the other interesting uses which can be

made of them for probing lattice QCD structure.

8.1 A Mixed Language Approach

Before discussing the details of our visualization system, let us make a brief

detour into the methodology used to develop it. The daily toolbox of any compu-

tational physicist tends to be a somewhat eclectic mix of large programs written

in languages like C and FORTRAN, controlled by a collection of scripts written

typically in languages like sh, sed, awk, and more recently Perl or Python.

While this approach of loosely bound scripts controlling monolithic appli-

cations has proven to be useful for a long time, it is not without its complications.

Typically this means that making changes to the important cores of the applications
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is a delicate and often difficult process, as large scientific codes have a tendency to be

complex and under-documented. And it also means that the core codes must worry

about issues such as user input/output, data storage or string parsing which are often

rather clumsy and error-prone operations in languages such as C and FORTRAN.

It is not uncommon to hear of scientific collaborations where these problems lead

the various members of a group to each keep his or her own copy of the core code,

making small changes to adapt to his research interests but breaking the modularity

and integration of the overall code and making it difficult to propagate these changes

back into the main project [7].

In recent years an alternative approach has been gaining ground in the

scientific computing community. The idea is to strip the compiled language core to

its bare essentials where numerical performance is paramount, and turn it into a set

of libraries with well defined interfaces but no overall control. Such libraries can

then be controlled via a high-level language where the global logic resides, but where

performance is a secondary concern. It is typical of scientific programs to spend

upwards of 90% of their CPU time in a key numerical core, and if this core is well

optimized, in the long run all the rest of the program can be written in a slower but

more convenient language without significant negative impact.

For this approach to work, it must be possible to access the compiled core

libraries from within the high-level language in a direct and natural manner. This is

not necessarily a trivial task, and it requires both careful design and implementation.

The advantages of this approach, when properly implemented, can be many.

First of all, high level languages are often interpreted; while this presents a per-

formance problem, it has the advantage of drastically simpler development cycles

compared to compiled languages. They also tend to be very expressive and to offer

natively complex data types such as lists and hash tables which simplify the orga-

nization of overall logic. Finally, these languages tend to have very comprehensive

libraries for many tasks not often found in languages like C or Fortran. Doing regular
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expression processing, html generation, image manipulation or communicating over

the internet with a remote server is often a matter of a few lines of code in these

languages. Similar tasks in C are often complex and delicate enough that they are

simply not done inside the language by scientific programmers.

There are many such languages today to choose from, with Perl and Python

being the most popular. In the scientific community, Python [82] is rapidly gaining

popularity for a number of reasons. It is a language with a very simple but expressive

syntax, an elegant mechanism for Object Oriented Programming whose syntax is far

cleaner than that of C++ or Java, a large set of powerful libraries, and some features

specifically useful to scientific computing users:

(1) A powerful set of extensions for numerical computing, known as NumPy,

has been developed and is actively maintained [4]. NumPy gives Python

capabilities roughly equivalent to that of systems like IDL or MatLab, with

the added benefit of a far superior language and the support of libraries for

other non-numeric tasks.

(2) Python was designed from the ground up to be easily extended in C (most

of NumPy is in C). This means that wrapping existing libraries in C or even

FORTRAN is a relatively easy task. There exist tools which automate most

of this process, such as SWIG [6] for C/C++ and f2py [60] for FORTRAN.

(3) Recent developments such as the weave project [48] allow for the inclusion

of C code inlined as part of a Python program. The code is automatically

compiled on the fly, eliminating the need to manually write extension mod-

ules.

There exist many scientific projects which have adopted Python as their overall

control/scripting language. For example, the blueprint for future development of

analysis software at the LHC (CERN) has chosen Python as a key component for

the integration of the complex set of systems and libraries which LHC will use [3].
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For our project we decided to use Python both for the analysis of most

of the data and for the three dimensional visualization problem. We developed an

environment called IPython for interactive use [64] which provides facilities similar

to those of the Mathematica or MatLab interpreters, with many enhancements. This

is useful both for code development and for interactive data analysis, as it provides

direct access to the Gnuplot plotting package.

Visualizing three-dimensional data is a computationally demanding task,

and an all Python approach to this problem would produce unacceptably slow per-

formance. But the VTK rendering toolkit [71], written in C++, is a very efficient

and comprehensive system which we can use for our purposes. It is actively main-

tained and can take advantage of accelerated rendering hardware present in modern

video cards. Furthermore, VTK comes with a set of Python bindings, which suits

our purposes very well.

On top of VTK, the MayaVi data visualizer [65] has been developed as a

graphical front end with interactive capabilities for real-time manipulation of the

data. MayaVi itself is written in Python, which means that it can be also controlled

via another program and not only from its graphical interface.

Our approach was then to build on top of MayaVi and VTK by writing a

set of Python classes and utilities to load and process the information from lattice

simulations, prepare them for processing and control a MayaVi instance for the

final visualization. A screen capture of the resulting MayaVi process is shown in

Figure 8.1. At this point the MayaVi process is active and the user can manipulate

the plotting region, rotate it in real time, modify the parameters of the visualization

and save the output to a number of formats.

The code is currently capable of understanding topological density and

fermionic eigenmode files, and is easily extensible to other quantities. It has methods

for computing histograms of the full four-dimensional sets and take three-dimensional

slices along any direction for visualization. It can compute color maps of the internal
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Figure 8.1: Screen capture of the MayaVi visualizer with isosurfaces of constant
topological charge and color maps of internal structure displayed.
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structure of the cutout objects at the lattice boundaries, as is shown in Figure 8.1.

Because lattice data is four dimensional, we developed a method to auto-

matically generate a table with three-dimensional slices of an entire lattice in HTML

format. It is done by controlling the MayaVi object directly through code and re-

quires no user interaction besides the choice of global parameters. This allows for

quick study of the structure of an entire lattice (instead of viewing only one slice at

a time), and because the format is easy to view in any browser, it provides an easy

way to share the information with collaborators. This kind of task is easy with a

language such as Python with extensions for HTML generation, but would be fairly

cumbersome in other languages like C or FORTRAN.

8.2 Artificial Instantons

In the previous chapter we have already used the results from our visual-

ization tool, so we will not repeat that here. We will however illustrate an additional

possibility it offers by looking at a simple example which is interesting for physical

reasons, that of artificial instantons.

Figure 8.2 shows a configuration where two instantons and two anti-instantons

have been manually constructed and aligned along a diagonal. The top image is one

of our usual isosurface representations, while the bottom image shows the topological

charge rendered as a translucent volume. Volume rendering is computationally very

expensive, because the image must be computed by following light rays throughout

the entire dataset taking into account the values of the data and mapping them to

a table of transparency values. This requires manual definition of an opacity func-

tion. While for most of our work we have used isosurface calculations, it was very

straightforward to add this capability to the code because the VTK toolkit already

has builtin volume renderers. The entire volume rendering code is about 250 lines

of Python.

These artificial configurations are physically interesting if we contrast them



113

Figure 8.2: Artificial instanton configuration, displayed as isosurfaces of constant
topological charge (top) and as a translucent volume with a suitably defined opacity
function (bottom).
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with the images we have been working with of real lattices. Most models (including

our own simple correlation one) work on the assumption that the objects in the QCD

vacuum look like the configuration from Figure 8.2. As we have seen, the reality of

lattice structure is far noisier and less structured than this. It should then come as

no surprise that identifying phenomenological quantities from instanton models is a

difficult proposition, to say the least.

8.3 The Relation Between Topological and Fermionic Observables

We will conclude this chapter by considering the connection between the

topological background and the fermionic eigenmodes of the Dirac operator. We

have already discussed this connection before, and it can be quantitatively studied

by considering the proper correlators, which we will not go into. But it is instructive

to perform a visual analysis with our tools to gain some intuition into the behavior

of these quantities.

In Figure 8.3 we present the topological density for a particular dynamical

configuration with β = 6.1. Six slices taken at x = 0, 3, 6, 9, 12 and 15 are shown.

As we have discussed, the Dirac operator has exact chiral zero modes on isolated

(anti) instantons. In the presence of nearby instanton–anti-instanton structures these

exact zero modes will split into conjugate pairs with non-zero eigenvalues. For this

particular configuration, professor Tom DeGrand gave us a dataset with the lowest

5 fermionic eigenmodes of the Dirac operator, the first two of which are chiral.

Our visualization code has been adapted to also analyze the structure

of fermionic eigenmodes. The raw data contains the scalars
〈
ψ̄(γ5 + 1)ψ

〉
and

〈
ψ̄(γ5 − 1)ψ

〉
, from which we can compute the densities

〈
ψ̄ψ
〉

and
〈
ψ̄γ5ψ

〉
.

Modes 0 and 1, shown in Figures 8.4 and 8.5, are both chiral (they both

have
〈
ψ̄(γ5 − 1)ψ

〉
= 0). Modes 2, 3 and 4, shown in Figures 8.6, 8.7 and 8.8 are not

chiral.

By comparing these figures to the gauge background, we can in fact confirm
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Figure 8.3: Topological charge density for a 164 lattice with β = 6.1, after 18 steps
of APE blocking. Slices taken at x = 0, 3, 6, 9, 12 and 15.
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that the various eigenmodes are strongly localized around the significant features of

the gauge fields. While any individual fermionic mode is free to couple more or less

strongly to any particular instanton, in general we find that the eigenmodes do not

localize in areas with no significant gauge background. This kind of analysis can be

a useful tool when trying to understand and optimize the chiral properties of various

fermionic actions, an important topic of much current research.
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Figure 8.4:
〈
ψ̄ψ
〉

for eigenmode 0.
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Figure 8.5:
〈
ψ̄ψ
〉

for eigenmode 1.
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Figure 8.6:
〈
ψ̄ψ
〉

for eigenmode 2.
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Figure 8.7:
〈
ψ̄ψ
〉

for eigenmode 3.
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Figure 8.8:
〈
ψ̄ψ
〉

for eigenmode 4.



Chapter 9

Summary and Outlook

We have completed a detailed study of the topological charge auto-correlation

in the finite temperature QCD vacuum. What have we learned? Well, we can safely

affirm that there is indeed a pair formation effect which is present in dynamical con-

figurations and absent in quenched simulations. Furthermore, this effect is indeed

anisotropic and dependent on the temperature. This is one more piece of evidence

to add to the puzzle of the mechanisms of the QCD phase transition: instanton-

fermion driven effects do appear to be an ingredient of the problem, and they do

persist through the transition.

However, we have also seen that this effect is mild and difficult to quantify.

The intuitive picture presented by Shuryak and others is appealing and has a direct

connection with artificially constructed phenomenological models. On the other

hand, we have seen that the actual QCD vacuum is a complex, extremely noisy

environment. The BPST instanton is an isolated, free space solution, and we have

seen that the lattice QCD vacuum has a lot of topological structures whose form

goes beyond that of the instanton solution. Instanton physics is here to stay, but we

have still much to learn about these objects.

We must also caution that the lattice set we analyzed appears to have worse

auto-correlation problems than we initially expected with respect to its topological

properties. Obtaining properly decorrelated configuration with respect to topological

properties is very expensive computationally. We are currently studying in more
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detail this issue, but it appears that for a proper study of topological effects, much

more careful attention needs to be paid to autocorrelation issues than has been done

in the past.

Our approach has been limited and we should try to construct a more

detailed description which can quantify the pairing effect correctly across the entire

lattice. We have in fact been working on such a model, but it has proven difficult to

obtain stable fits to the data with it and we must refine it further before conclusions

can be drawn from it.

It is also possible that these simulations are using a quark mass which is

too heavy and therefore suppresses the effects. Until dynamical simulations can be

performed with lighter quark masses and a similar analysis can be repeated, we will

have to wait for the answer to this question.

The thermodynamics of QCD is a fascinating problem and we are starting

to obtain experimental data in this regime from the RHIC experiments ([52], [74]).

It is certainly far too optimistic to expect lattice calculations to be able to describe

the details of an environment as complex as a violent heavy ion collision, but it is still

instructive to learn as much as possible about the broad thermodynamic properties of

this regime. We have mounting evidence that instantons (or more broadly speaking,

instanton-like topological structures) play a role in this problem.

Furthermore, it seems clear that dynamical simulations are needed to un-

derstand the behavior of QCD in these regimes, as critical details are missed by the

quenched approximation.

Finally, the development of flexible, easy to use visualization tools is a

useful addition to a lattice physicist’s toolbox. While these kinds of visual studies

will never in and of themselves provide ultimate quantitative answers, they can be

useful in building an understanding of this complex environment and guiding one’s

intuition.
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