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Abstract. Solutions to the general classical Coulomb three-body problem in the
form of rigid-rotator and fixed-shape configurations are studied. In the collinear
case, some necessary and/or sufficient conditions for the existence of the so-called
charge-symmetrical, (¹)(þ)(¹), and charge-asymmetrical, (¹)(¹)(þ), configura-
tions are stated. These conditions involve relations between the geometrical and
dynamical parameters of the system under study. The impossibility of the existence
of a planar Coulombic rigid rotator is demonstrated. In the two-dimensional case,
fixed-shape solutions are studied analytically, and it is shown that, in the three-
dimensional case, only fixed-shape solutions involving a triple collision and a static
case are possible. Finally, some numerical experimentation, mostly based upon
theoretical predictions of the work, is performed, and new bound (although
unstable) rotating-oscillating orbits for systems such as the positronium negative
ion and helium are found.

1 Introduction

The classical three-body problem (three particles with arbitrary masses and charges
interacting through gravitational or Coulomb forces) is one of the fundamental, and still
not completely explored, problems of mathematical physics. Its study is important in a
variety of physics and mathematics fields [6, 9, 23, 31]. It also has a long tradition in
connection with chaos research, being the problem that led Poincare´ to make his famous
remarks concerning the sensitive dependence on the initial conditions exhibited by
certain dynamical systems [13].

It was Lagrange who, interested in celestial mechanics, first attacked the problem
within the framework of classical dynamics [9]. He formulated the gravitational
problem rigorously and found a few particular solvable cases (called ‘‘Lagrange’s
configurations’’ [24]). In the realm of atomic physics, the problem is first met when
attempting to evaluate the energy spectrum of two-electron atoms – the helium
problem.

The general (classical) three-dimensional three-body problem has been studied
extensively through numerical simulations [14, 27] and analytical studies [7, 11, 20].
The fact that it is a non-integrable problem [24] makes it too complicated for a
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systematic analysis in full generality, and has led to the study of various simplifications
or restrictions of its geometrical (inter-particle distances) and/or dynamical parameters
(masses and charges), which include: the restricted three-body problem; the helium-like
problem; the rectilinear three-body problem; the planar gravitational three-body
problem; the three-dimensional problem with finite non-zero masses, but with special
symmetries; and the three-dimensional rigid-rotator configurations.

In this paper, we intend to study, from a classical point of view, the general Coulomb
three-body problem (with arbitrary masses and charges), in the framework of the last
four simplifications stated above. Even though the most important applications of such
a study would be in atomic and molecular physics (and so, in rigour, quantum
mechanics should be applied instead [2, 5, 21, 22]), considerations from classical
mechanics may be really useful in various cases, especially concerning states with some
‘‘classical character,’’ such as the highly (doubly) excited states [9, 28]; it should be
stressed that for low quantum numbers, in particular the ground state, concepts like
classical trajectory and its stability are irrelevant. Besides, it came to the physicist’s
attention a few decades ago that some physically relevant values could be extracted
from a classical-mechanics analysis through a suitable application of the correspon-
dence principle [25, 26]. Furthermore, the exact quantum computation of certain
matrix elements may be cumbersome, or very demanding in terms of numerical
accuracy and time, while their corresponding semiclassical evaluation remains tractable
[15, 19].

Sect. 2 analyzes the collinear configuration and the planar non-collinear configura-
tion. In Sect. 3, a brief review of the results obtained by some other authors in the study
of the three-dimensional rigid configurations and then a detailed study of the general so-
called ‘‘fixed-shape solutions’’ are given, and some general conclusions regarding these
configurations are drawn. The existence of fixed-shape solutions in rotating collinear
configurations and triple-collision motions as well as in static configurations is shown.
Sect. 4 contains some numerical results, obtained by integrating the equations of
motion. Finally, in Sect. 5, conclusions and some open questions are stated.

2 Rigid Collinear Configurations

Rotating rigid solutions in which the particles remain collinear throughout the motion,
in the case of two identical negatively charged particles moving along a circle on
opposite sides of a third positively charged one, have been studied by several authors
[10, 28]. This is a case of the well-known Wannier configurations. The aim of this
section is to study the general problem of three interacting charged particles (two
negative and one positive) with arbitrary masses and magnitudes of charges, asking if it
is possible for the system to move so that the three particles lie always on a line passing
throughG (the centre of mass of the system), which rotates uniformly in a plane about
this point with an angular velocityQ. Since the Coulomb interaction can be of two types
(repulsive or attractive), two different cases can arise: one in which the positive particle
is placed between the two negative particles (we shall call this case ‘‘charge-
symmetrical configuration’’), and one in which the two negative particles are adjacent
and the positive particle is in one of the extreme positions of the configuration (‘‘charge-
asymmetrical configuration’’). We shall begin by studying the charge-symmetrical
configuration.
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2.1 Charge-Symmetrical, or (¹)(þ)(¹), Configuration

Let us denote the three particles byA1; A2; A3, so that each particle has the following
masses and charges,

A1: m1;¹Z1e;

A2: m2;þZ2e;

A3: m3;¹Z3e; ð1Þ

where e> 0 is an arbitrary charge unit, and allmi and Zi (i = 1, 2, 3) are positive
numbers (see Fig. 1 a). For simplicity, we set the constant of the Coulomb interaction
equal to one.

Let now the distances fromG, measured in the same direction, bex1, x2, x3. We may
assume, without loss of generality, thatx1 < x2 < x3, sox1 < 0 andx3 > 0. Then, ifQ is
the angular velocity of the system, Newton’s second law requires:

m1Q
2x1 ¼ ¹

Z1Z2

x2 ¹ x1

ÿ �2 e2 þ
Z1Z3

x3 ¹ x1

ÿ �2 e2
; ð2Þ

m2Q
2x2 ¼

Z1Z2

x1 ¹ x2

ÿ �2 e2 ¹
Z3Z2

x3 ¹ x2

ÿ �2 e2
; ð3Þ

m3Q
2x3 ¼

Z2Z3

x2 ¹ x3

ÿ �2 e2 ¹
Z1Z3

x1 ¹ x3

ÿ �2 e2
: ð4Þ

It should be noticed that Eq. (3) is valid whetherx2 is positive or negative.
Let us introduce the inter-particle distances as:r1 ¼ x3 ¹ x2, r2 ¼ x3 ¹ x1, and

r3 ¼ x2 ¹ x1. We now look for fixed values for the ratiosr1 : r2 : r3. If we define
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Fig. 1. Collinear solutions in which the lengthsr1, r2, andr3 remain constant throughout the motion, as
seen in the rotating frame.a: Charge-symmetrical configuration.b: Charge-asymmetrical configuration



k ; r1=r3 so that
r1

k
¼

r2

k þ 1
¼

r3

1
; ð5Þ

we have

k ¼
x3 ¹ x2

x2 ¹ x1
: ð6Þ

Evaluating x3 ¹ x2 and x2 ¹ x1 from Eqs. (2)–(4), and substituting the result into
expression (6), we obtain the following 5th-order equation fork,

Z1Z2

m12
k5 þ Z1Z2

2
m1

þ
3

m2

� �

k4 þ Z1Z2
1

m1
þ

3
m2

� �

¹
Z1Z3

m1
þ

Z2Z3

m2

� �� �

k3

þ
Z1Z3

m3
þ

Z1Z2

m2

� �

¹ Z2Z3
3

m2
þ

1
m3

� �� �

k2 ¹ Z2Z3
3

m2
þ

2
m3

� �

k ¹
Z2Z3

m23
¼ 0; ð7Þ

wheremij ¼ mi mj =ðmi þ mjÞ, with i, j = 1, 2, 3.

2.1.1 Existence of Solutions

The physically meaningful solutions to our problem will be related to the positive real
roots of the above equation. In order to look for such roots, we use Descartes’ signs rule
[3], by first observing that the coefficients ofk5 and k4 are always positive, and the
coefficients ofk1 andk0 negative. Then, if we callCi the coefficient ofki (i ¼ 0; . . . ;5),
we have the following nine different possibilities for the number of positive real roots of
Eq. (7):

a) C3 > 0 and C2 > 0. One.
b) C3 > 0 and C2 < 0. One.
c) C3 < 0 and C2 > 0. Three or one.
d) C3 < 0 and C2 < 0. One.
e) C3 ¼ 0 and C2 > 0. One.
f) C3 ¼ 0 and C2 < 0. One.
g) C3 > 0 and C2 ¼ 0. One.
h) C3 < 0 and C2 ¼ 0. One.
i) C3 ¼ 0 and C2 ¼ 0. One.

In conclusion, for all the cases, there is always at least one physically meaningful
value for k. This fact, however, is still not an answer to the question regarding the
existence of solutions to the (¹)(þ)(¹) configuration, as we shall see next.

From Eqs. (2)–(4), and the definitions ofri (i = 1, 2, 3) andk, we can deduce

Q2 ¼
e2

r3
3

1
m3

Z2Z3

k2 k þ 1ð Þ
þ

1
m1

Z1Z2

k þ 1
¹

1
m13

Z1Z3

k þ 1ð Þ3

� �

; ð8Þ

which, in order to have a positive value forQ2, poses a restriction on the domain
available tok, namely

k þ 1ð Þ2 Z2Z3

m3
þ

Z1Z2

m1
k2

� �

$
Z1Z3

m13
: ð9Þ
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In this fashion, we conclude that if the collinear charge-symmetrical configuration
(¹)(þ)(¹) actually exists (so thatk > 0 andQ2

> 0), thenk must fulfill condition (9),
and conversely, ifk obeys Eq. (9), the configuration (¹)(þ)(¹) exists for all possible
cases.

2.2 Charge-Asymmetrical, or (¹)(¹)(þ), Configuration

Let us perform the following changes in notation:

A1: m1;¹Z1e;

A2: m2;¹Z2e;

A3: m3;þZ3e: ð10Þ

Here, again,x1, x2, andx3 are the distances fromG measured in the same direction as
in the symmetrical configuration (see Fig. 1 b).

It can be verified that, in this case, the equations of motion are equivalent to those of
the previous configuration, (¹)(þ)(¹), if we perform the changesZ2 → ¹Z2 and
Z3 → ¹Z3. Taking this into account, and retaining the definitions forri (i = 1, 2, 3)
andk, the equation fork becomes:

¹
Z1Z2

m12
k5 ¹ Z1Z2

2
m1

þ
3

m2

� �

k4 þ ¹Z1Z2
1

m1
þ

3
m2

� �

þ
Z1Z3

m1
¹

Z2Z3

m2

� �� �

k3

¹
Z1Z3

m3
þ

Z1Z2

m2

� �

þ Z2Z3
3

m2
þ

1
m3

� �� �

k2 ¹ Z2Z3
3

m2
þ

2
m3

� �

k ¹
Z2Z3

m23
¼ 0:

ð11Þ

It must be noted that the coefficients ofki ði ¼ 0;1;2;4;5Þ are now always negative.
Therefore, only three different cases arise:

a) C3 > 0. Two or zero positive real roots.
b) C3 < 0. No positive real roots.
c) C3 ¼ 0. No positive real roots.

2.2.1 Necessary Conditions for the Existence of a Solution

From the analysis given above, we conclude that only if

Z1Z3

m1
>

Z2Z3

m2
þ Z1Z2

1
m1

þ
3

m2

� �

; ð12Þ

then the collinear (¹)(¹)(þ) configuration might be possible. However, this is not a
sufficient condition for the existence of such a configuration (because, in some special
cases, the number of positive real roots could be zero, or the positive real roots could not
satisfy the condition (14) stated below). In particular, condition (12) is not satisfied by a
system in whichZ1 ¼ Z2 andm1 ¼ m2.

On the other hand, if such a configuration existed (and sok [ k1; k2

� 	

), the two
possible angular velocities of the system would be given by

Q2
i ¼

e2

r3
3

1
m3

Z2Z3

k2
i ki þ 1
ÿ �¹

1
m1

Z1Z2

ki þ 1
þ

1
m13

Z1Z3

ki þ 1
ÿ �3

( )

ði ¼ 1; 2Þ ð13Þ
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and the allowed domain forki (i ¼ 1, 2) would be determined from

ki þ 1
ÿ �2 Z2Z3

m3
¹

Z1Z2

m1
k2

i

� �

$ ¹
Z1Z3

m13
: ð14Þ

We may now conclude that if two positive roots of Eq. (11),k1 andk2, can be found,
then the configuration (¹)(¹)(þ) exists if and only if one or both of suchki belong to the
domain given by condition (14). Below we shall show an explicit example of the
existence of these solutions.

2.3 Impossibility of a Plane Rigid Two-Dimensional Rotator

Following the reasonings given in ref. [24] for the gravitational case, we have proved
the non-existence of a rigid two-dimensional configuration of the Coulombic rotator.
For the case of a system with two identical negatively charged particles, this had already
been stated as an intuitive fact by Grujic´ [9].

The notation to be used is the same as in the problem of the (¹)(¹)(þ) configura-
tion, and we shall refer in some of the reasonings to Figs. 2 a and b.

Let us start from the assumption that such a configuration does in fact exist. Then,
the particleA3 must verify the equilibrium conditions

Z1

r2
2

sinv2 ¼
Z2

r2
1

sinv1; ð15Þ
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Fig. 2. Diagrams used in the proof of the inex-
istence of a rigid two-dimensional rotator.G is
centre of mass of the system,Q the one of
particlesA1 and A3, and H the one of particles
A1 andA2



m3

Z3e2 Q2A3G ¼
Z1

r2
2

cosv2 þ
Z2

r2
1

cosv1; ð16Þ

with v1 ¼ ∠ HA3A2

ÿ �

, v2 ¼ ∠ A1A3H
ÿ �

, v1 andv2 [ 0;p½ ÿ, andH the centre of mass of
A1 and A2 (see Fig. 2 a). Now, from the geometry of the triangleA1A2A3 and the
equation that defines the position ofH, m1A1H ¼ m2HA2, we deduce

r1 sinv1

r2 sinv2
¼

HA2

A1H
¼

m1

m2
: ð17Þ

In this way, from Eqs. (15) and (17), we finally have the ratio:

r1

r2
¼

m1Z2

m2Z1

� �1=3

: ð18Þ

On the other hand, the dynamics of particleA2 yields (see Fig. 2 b)

Z3

r2
1

sinb1 ¼ ¹
Z1

r2
3

sinb2; ð19Þ

m2

Z2e2 q2A2G ¼
Z3

r2
1

cosb1 ¹
Z1

r2
3

cosb2; ð20Þ

with b1 ¼ ∠ A3A2Q
ÿ �

, b2 ¼ ∠ QA2A1

ÿ �

, b1 andb2 [ 0;p½ ÿ, andQ the centre of mass of
A1 andA3. Finally, from the geometry of Fig. 2 b, we have

sinb1

sinb2
¼

m3r1

m1r3
: ð21Þ

Combining Eqs. (19) and (21), we find

r1

r3
¼ ¹

Z1m3

Z3m1

� �1=3

: ð22Þ

And, by analogous calculations on particleA1,

r2

r3
¼ ¹

Z2m3

Z3m2

� �1=3

: ð23Þ

From Eqs. (18), (22), and (23), and the fact that, by definition,ri > 0, Zi > 0, mi > 0
(i ¼ 1, 2, 3), we arrive immediately at a contradiction (note the minus sign in Eqs. (22)
and (23)). Thus, we have proven that for the general Coulomb three-body problem it is
impossible to obtain a plane rigid-rotator non-collinear solution.

This result could have been deduced also from Eq. (19), due to the minus sign
present in this equation and the fact thatb1;b2 [ 0;p½ ÿ. Note also that this result is still
valid if G is no longer the centre of mass of the system, but its centre of charge (or
another centre assumed at rest), because the origin of the contradiction is purely
dynamical (Eq. (19)) and not geometrical (Eqs. (17) and (21)).
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3 Fixed-Shape Solutions

We now intend to look for solutions in which the shape of the triangle or the line formed
by the three particles is invariant as time evolves, so that the ratios of the inter-particle
distances remain constant while the figure oscillates about a given rigid-rotator solution.
This kind of solution has been found for the general (planar) gravitational three-body
problem [4, 24] and for Coulomb three-body systems [32].

To begin, we shall deal with the three-dimensional case, in which the triangle
formed by the particles rotates about an axis through its centre of mass, the orbits of the
particles lying in different planes; the plane motion will then be obtained as a particular
configuration. The notation and mathematical formalism to be used here will be the
same introduced by Grujic´ and Simonovic´ [10]. A more detailed study of some
particular cases of this configuration – including stability analyses – can be found in
the papers by Poirier [28] and the afore-mentioned authors, and in references given
therein.

3.1 Basic Formalism and Introduction of the ‘‘Stretching’’ Function

Newton’s equations for this system read (i; j ¼ 1, 2, 3)

mi
d2r i

dt2
¼
X

jÞi

Jij r ij ; ð24Þ

with inter-particle potential functions of the form

Jij ¼
Cij

r3
ij

; ð25Þ

wherer ij ; r i ¹ r j .
Eq. (24) can be written in a compact form by expressingr3 as function ofr1 andr2

in the centre-of-mass frame and introducing coordinates relative to particle 3. This
yields (24) the form

M
d2R
dt2

¼ FR; ð26Þ

with the definitions

M ¼
m12 þ m13 ¹m12

¹m12 m12 þ m23

� �

; ð27Þ

mij ¼
mimj

m
; ð28Þ

m ¼ m1 þ m2 þ m3; ð29Þ

R tð Þ ¼
r13

r23

� �

; ð30Þ

and

F ¼
J12 þ J13 ¹J12

¹J12 J12 þ J23

� �

: ð31Þ
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The most general fixed shape solution can be obtained by a rotation and a
homogeneous scale change applied to a constant vector. Assuming that each particle
rotates about theZ axis, solutions to the system (26) are sought (as is done, for example,
in ref. [10]) in the form of the sum

r ij ðtÞ ¼ f ij t; Qð Þ þ wij t; Qð Þ; ð32Þ

with f ij t; Qð Þ a vector parallel to theZ axis, andwij t; Qð Þ a rotating vector in theXYplane.
Q is a parameter to be determined later.

It is convenient to writef ij andwij in the form

f ij ðt; QÞ ¼ sðt; QÞf ij ðQÞ; ð33Þ

wij ðt; QÞ ¼ gðt; QÞwij ðQÞ; ð34Þ

where the ‘‘stretching’’ functiongðt; QÞ is defined by

gðt; QÞ ¼ sðt; QÞ expfi½Qt þ bðt; QÞÿg; ð35Þ

with sðt; QÞ ¼ gðt; QÞ
�
�

�
�.

The complex character ofg is, of course, a mathematical artifice; it serves to
represent by a single number the phase and scaling ofwij ðt; QÞ with respect towij ðQÞ. It
makes no sense to multiply the vertical component of Eq. (33) by a complex number.

3.1.1 Fixed-Size Solutions

Let us suppose that we have already found a rigid-rotator solution to Eq. (26), described
as follows. The asymmetric rotator is a three-dimensional case, in which the triangle
formed by the particles rotates about an axis through its centre of mass, the orbits of the
particles lying on different planes. A more detailed study of some particular cases of this
configuration – including stability analyses – can be found in refs. [10] and [28], and in
references given therein.

Since all inter-particle distances are kept fixed, the basic differential system (26) is
linear with time-independent coefficients. Its general solution is a linear combination of
exponentials. The structure of system (26) ensures that the components ofR are coupled
two by two (bu being any of the three fixed rectangular axes,r13 �bu is only coupled to
r23 �bu). This system is simpler than true solid-motion equations, where the various
angular motions are coupled.

A rigid solution has the form given by Eq. (32) with a stretching function
gðt; QÞ ¼ s0 expðiQtÞ. In fact, if we define R ¼ F þ W, whose components are
given by Eq. (30) and separated in concordance with definition (32), then Eq. (26)
becomes

¹Q2MW ¼ FðF þ WÞ: ð36Þ

Considering thatF andF are time-independent, Eq. (36) is satisfied if

FF ¼ 0 ð37Þ

and

¹Q2MW 0 ¼ FW0; ð38Þ
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where it was supposed thatW ¼ W0 expðiQtÞ. Eq. (37) yields the two-dimensional case,
if F ¼ 0, or one of the three-dimensional configurations found by Langmuir and Poirier,
if F Þ 0. Note that a non-zeroF requires thatD ¼ detF ¼ 0, whereD is defined in
Eq. (42).

On the other hand, in the rotating term, the time-independent factorW0 must satisfy

LW0 Qð Þ ¼ 0; ð39Þ

L ¼
M11Q

2 þ F11 M12Q
2 þ F12

M12Q
2 þ F12 M22Q

2 þ F22

" #

: ð40Þ

The secular equation for the angular frequency yields

Q2 ¼
¹B 6 ðB2 ¹ 4ADÞ1=2

2A
; Q02

;Q002
; ð41Þ

with

A ¼
m1m2m3

m
;

B ¼ m13 þ m23

ÿ �

J12 þ m12 þ m23

ÿ �

J13 þ m12 þ m13

ÿ �

J23;

D ¼ J12J13 þ J12J23 þ J13J23: ð42Þ

As mentioned before, ifD ¼ 0, the three-dimensional solutions can exist but, ifD Þ 0,
thenF ¼ 0 and only a plane case is possible.

It is useful to note that Eqs. (41) and (42) provide us with a first tool to check if a
given system of masses and charges can conform to a given rigid-rotator configuration.
It suffices to verify that the chosen system yields a real non-negative value forQ2.

Two cases arising from Eq. (41) can be distinguished:
(a)D Þ 0 (called the ‘‘non-degenerate’’ solution): It can be shown for a system with

identical particles 1 and 2 (m13 ¼ m23, C13 ¼ C23) that a so-called Wannier configuration
(collinear symmetric rotator, with inter-particle distances equal and opposite) arises
(see, for example, ref. [28]).

(b) D ¼ 0 (‘‘degenerate’’ solution): In this case, the relative vectors have
two orthogonal components, one constant and the other rotating. There are two
values forQ,

Q ¼ 0 and Q ¼ ¹
B
A
: ð43Þ

If Q Þ 0, two cases appear, depending on whetherJ13 ¼ J23 or J13 Þ J23. These are
the Langmuir and Poirier cases considered in ref. [10] (see Fig. 3).

The studies performed by the authors of ref. [10] (and by Klar [16, 17]) demonstrate
the existence of solutions in the form of a Coulombic rigid three-dimensional rotator
with arbitrary values of the masses and charges.

If Q ¼ 0, we observed a case not discussed in the literature. It is a non-rotating
equilibrium configuration corresponding to the symmetric situation illustrated in
Fig. 1 a. In order for this solution to exist it is necessary that

Z1 > Z2 and Z3 ¼
Z1Z2

ðZ1=2
1 ¹ Z1=2

2 Þ2 : ð44Þ
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The overall size of the system is arbitrary and the inter-particle distance ratios are mass-
independent and given by

k ¼
Z1=2

2

Z1=2
1 ¹ Z1=2

2

; ð45Þ

wherek is defined by Eq. (5). Note that this result is compatible with Eqs. (7) and (8),
and that no analogous situation in the asymmetric configuration exists. A possible
realization of this static equilibrium would be observed in a system constituted by an
electron and two beryllium nuclei, as can be obtained from the Diophantine equation in
(44).

3.1.2 Non-Fixed-Size Solutions

We now want to study the conditions under which a solution of the form given by
Eq. (32) exists, together with definitions (33), (34), and (35). The functiong t; Qð Þ

‘‘stretches’’ in a physically suitable fashion each side of the rigid rotating triangle as
time evolves, keeping constant the inter-particle distance ratios.

3.2 Equation for the Stretching Function

Now, the solutions to the inter-particle distances (see Eqs. (33) and (34)) werea priori
chosen to be the product of one particular rigid-rotator solution (see ref. [10]) and a
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Fig. 3. Three-dimensional solution in
which the size and shape remain constant
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stretching function. It should then be clear that we need only to derive relations between
the stretching function and the rest of the system’s characteristics.

By replacing the ansatz given in Eqs. (33)–(35), and the substitutionR ¼ sF þ gW,
in the matrix Eq. (26) we readily obtain

s̈M ¹
1
s2 F Qð Þ

� �

F ¼ 0 ð46Þ

and

g̈M ¹
g

s3 F Qð Þ

� �

W ¼ 0: ð47Þ

This result was found by observing that, ifF Qð Þ represents the matrix of potentials when
the inter-particle distances are kept fixed (rigid-rotator configuration), then the matrixF
corresponding to the fixed-shape solutions and the matrixF Qð Þ are related by

F ¼
1
s3 F Qð Þ: ð48Þ

If W is such that¹Q2MW ¼ FðQÞW, according to Eq. (38), then, using the fact that
MW Þ 0, we obtain thatg satisfies the same equation of a particle attracted by a fixed
centre through a 1=r2 force:

g̈ ¼ ¹Q2 g

s3 : ð49Þ

We shall write a bound solution to Eq. (49), in the form

xk ; ReðgÞ ¼ a 1 ¹ ecosuð Þ and yk ; ImðgÞ ¼ a 1 ¹ e2ÿ �1=2
sinu; ð50Þ

where u is the excentric anomaly that satisfies the Kepler equation,ðt ¹ t0ÞnQ ¼

u ¹ esinu; n is the frequency,a is the larger semi-axis of the ellipse ande is its
excentricity. This indicates that the three particles can move following any Kepler orbit.
A more general solution is obtained by performing a rotation of the vectorðxk; ykÞ (see
Figs. 4 d and 6 a). Also unbound fixed-shape solutions exist.

From these relations, we then conclude that, for the fixed-shape solutions, theXY
projection of the motion must be given by

w f
ij tð Þ ¼ a xij Qð Þ 1 ¹ ecosuð Þ ¹ yij Qð Þ 1 ¹ e2ÿ �1=2

sinu
h i

ex

þ a yij Qð Þ 1 ¹ ecosuð Þ þ xij Qð Þ 1 ¹ e2ÿ �1=2
sinu

h i

ey; ð51Þ

wherexij Qð Þ andyij Qð Þ correspond to particular initial values of a given rigid-rotator
configuration. IfF ¼ 0 then Eq. (46) is automatically satisfied, what proves that fixed-
shape solutions in which particles move around Kepler-like orbits in a plane always
exist.

Now, let us examine the existence of three-dimensional, orF Þ 0, fixed-shape
solutions in some special cases. It can be shown thats ¼ ðx2

k þ y2
kÞ

1=2 ¼ að1 ¹ ecosuÞ.
Then Eq. (46) becomes

e
cosu ¹ e

1 ¹ ecosu
M ¹ F

� �

F ¼ 0: ð52Þ
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Eq. (52) shows that, ife ¼ 0, a rigid three-dimensional solution exists, if
FF ¼ 0, the same result as given by Eq. (37). Sinceu is not constant and detM Þ 0,
another possible solution is obtained ife ¼ 1, the triple-collision solution. Relativity,
however, precludes triple, as well as binary, collisions. The maximal excentricity of the
binary collision with Coulombic forces is given in terms of the frequency of the Kepler
motion n, the larger semiaxisa and the light velocity c by e< 1 ¹ 2ðan=cÞ2

<1 ¹ 2ðZaÞ2.
If Q ¼ 0 andFF ¼ 0, another solution is obtained, namelyg̈ ¼ 0; this means thatg

is a linear function of time. Considering that in the static case the size of the system can
be arbitrary, then the constant-velocity solution is compatible with the static config-
uration described in Subsection 3.1.1.
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Fig. 4. Motions of e¹ þ F¹ þ C6þ related to the rigid charge-asymmetric configuration. Note the small
orbits of the F¹ and C6þ particles around the origin of coordinates.a: Collinear asymmetric configuration.
b: Variation of 102 on the radial momentum of particle 2.c: Variation of 102 on the tangential momentum
of particle 2.d: Asymmetric fixed-shape solution



3.3 Fixed-Shape Solutions in the Collinear Configuration

As seen in the last section, general three-dimensional fixed-shape solutions cannot exist,
due to the requirement, imposed by the equations of motion, that theZ components of
the inter-particle distances must vary with time at a different ratio than theX and Y
components do. This fact, however, is itself a proof of the existence of fixed-shape
solutions in the two-dimensional case (and, more specifically, in the collinear config-
urations, because of the impossibility of having a planar non-collinear rigid solution). In
this fashion, makingZ ¼ 0 the plane on which the three particles lie, we obtain for the
inter-particle vectors

r ij ¼ xo
ij xk ¹ yo

ij yk

ÿ �

ex þ yo
ij xk ¹ xo

ij yk

ÿ �

ey; ð53Þ

wherexk and yk are given by Eq. (50). This indicates that the three particles move
along Kepler orbits. It should be observed that this solution is completely general,
regardless of the values of the geometrical or dynamical parameters of the system.
This result is the generalization to Coulombic forces of that obtained by Lagrange in
the gravitational case [24], and the symmetric case is a kind of non-rigid Wannier-
type solution.

4 Numerical Work

In order to perform numerical studies on the different configurations hereto described,
we developed a program that integrates the equations of motion for the general
Coulomb three-body problem with arbitrary charges and masses in three-dimensional
space [27]. In this section we will briefly outline the mathematical procedure necessary
to reliably perform the numerical integration and the resulting program.

4.1 Regularization Procedure

The three-body Hamiltonian presents numerical difficulties whenever any of the inter-
particle distances becomes very small because of the singularity of the Coulomb force
between two point charges in contact. One standard way of avoiding the problems
associated withbinarycollisions (the three-particle collision cannot be regularized) was
developed by Aarseth and Zare [1] based on previous work by Kustaanheimo and Steifel
[18]. We will omit here the details of the procedure, which is described in full length in
ref. [1] and more concisely – for the two-dimensional case – in ref. [30]; only the main
expressions will be presented.

After writing the three-body Hamiltonian in the centre-of-mass reference frame
with the coordinates relative tom3 defined in Eq. (30), and their conjugate momenta,
these are replaced by the so-called regularized coordinatesðQj ;PjÞ with j ¼

1;2; . . . ;8.
Briefly, we define the canonic setsðqi ; piÞ with i ¼ 1; 2; . . . ; 6 in terms of the twelve

components offr13, r 23, p1, p2g. We next expand the dimension of the phase space by
renaming variables according to

qr → qrþ1; pr → prþ1 ðr ¼ 4;5;6Þ; ð54Þ

leaving the variables withr # 3 as before and defining the mock coordinates and
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momenta

q4 ; 0; q8 ; 0; p4 ; 0; p8 ; 0: ð55Þ

Then, the regularized coordinates are defined by

Q1 ¼
1
2

ð r13

�
�

�
�þ q1Þ

� �1=2

;

Q2 ¼
q2

2Q1
;

Q3 ¼
q3

2Q1
;

Q4 ¼ 0; ð56Þ

for q1 $ 0 or

Q2 ¼
1
2

ð r13

�
�

�
�¹ q1Þ

� �1=2

;

Q1 ¼
q2

2Q1
;

Q3 ¼ 0;

Q4 ¼
q3

2Q2
; ð57Þ

for q1 < 0: For the variablesðQ5;Q6;Q7;Q8Þ we have analogous expressions, simply
adding 4 to all indices and replacingr13 by r 23.

Now, if we define the matricesA1 andA2 by

A1 ¼ 2

Q1 Q2 Q3 0

¹Q2 Q1 Q4 0

¹Q3 ¹Q4 Q1 0

Q4 ¹Q3 Q2 0

2

6
6
6
4

3

7
7
7
5

; ð58Þ

A2 ¼ 2

Q5 Q6 Q7 0

¹Q6 Q5 Q8 0

¹Q7 ¹Q8 Q5 0

Q8 ¹Q7 Q6 0

2

6
6
6
4

3

7
7
7
5

; ð59Þ

we can write the regularized momenta,P1 andP2; as column vectors with components
ðP1;P2;P3;P4Þ andðP5;P6;P7;P8Þ, respectively, given by

Pk ¼ Akpk ðk ¼ 1;2Þ: ð60Þ

Finally, a new time parametert is introduced through the relation

dt ¼ R1R2 dt; ð61Þ

having definedR1 ¼ jr13j, R2 ¼ jr23j, and R ¼ jr12j. Then the resulting regularized
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Hamiltonian reads

GðQ;PÞ ¼
R2

8m13
P2

1 þ
R1

8m23
P2

2 þ
1

16m3
PT

1A1AT
2P2

¹ R2Z1Z3 ¹ R1Z2Z3 þ R1R2
Z1Z2

R
¹ E

� �

; ð62Þ

whereE is the total energy of the system andm13 andm23 are the reduced masses of
particles 1 and 2 with respect tom3, respectively.

The inter-particle distancesR1; R2, and R must be expressed in terms of the
regularized coordinates, the relations being

R1 ¼
X4

r¼1

Q2
r ; R2 ¼

X8

r¼5

Q2
r ; ð63Þ

and

R2 ¼ R2
1 þ R2

2 ¹ 2f1 � f 2; ð64Þ

where the vectorsf 1 andf 2 are, expressed in column form,

f 1 ¼

Q2
1 ¹ Q2

2 ¹ Q2
3 þ Q2

4

2 ðQ1Q2 ¹ Q3Q4Þ

2 ðQ1Q3 þ Q2Q4Þ

0

2

6
6
6
4

3

7
7
7
5

; f2 ¼

Q2
5 ¹ Q2

6 ¹ Q2
7 þ Q2

8

2ðQ5Q6 ¹ Q7Q8Þ

2ðQ5Q7 þ Q6Q8Þ

0

2

6
6
6
4

3

7
7
7
5

: ð65Þ

With respect to the HamiltonianGðQ;P; tÞ, we have the canonical equations of
motion

dQr

dt
¼

∂G

∂Pr
;

dPr

dt
¼ ¹

∂G

∂Qr
ðr ¼ 1; 2; . . . ; 8Þ: ð66Þ

The explicit form of these equations for the general three-dimensional case is quite
cumbersome, although easily obtained with a symbolic-manipulation computer pro-
gram (such as Maple or Mathematica). It is nonetheless interesting to note that the
derivatives∂R=∂Qi can be expressed in a compact form, which is more efficient for
numerical purposes. By defining the 8× 1 column vectorg as

g ¼
f 1 ¹ f2

f 2 ¹ f1

� �

; ð67Þ

and the 8× 8 matrix A

A ¼
A1 04

04 A2

� �

; ð68Þ

where04 is the null 4× 4 matrix, one can write, as can be easily seen [27],

∂R
∂Qi

¼
1
R

ðAgÞi ; i ¼ 1; 2; . . . ; 8: ð69Þ
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4.2 Calculation Program

Through the time-scale change, the effect of the regularization is to take very small time
steps near the binary collisions (R1 < 0 or R2 < 0), while keeping a non-divergent
Hamiltonian. Our program, developed in C++, uses a standard 4th-order Runge-Kutta
adaptive step-size integrator [29] driven by a routine that takes care of coordinate
transformations, memory storage, disk swapping of data and Poincare´-section calcula-
tions. Poincare´ sections are obtained using reverse integration over the trajectory to find
the intersection between the orbit and the Poincare´ surface instead of interpolation [12].

Initial conditions are defined in laboratory coordinates, integration is performed in the
regularized ones, and position output data files are generated in centre-of-mass coordinates
for viewing convenience (to eliminate from the plots uniform displacements of the system).

The resulting program, which can be used as a tool for numerical exploration of the
general Coulomb three-body problem, produces orbits in reasonable times on a typical
desktop computer: usually below one minute for most three-dimensional configurations.
The source code is available from the authors upon request.

To conclude our study, we shall finally investigate the numerical feasibility and
stability of some configurations that are based on the conclusions drawn in the previous
sections. The systems to be studied throughout (with the exception of the (¹)(¹)(þ) and
the Poirier configurations) will be the positronium negative ion (Ps¹) and the helium
atom (He). Atomic units will be used in all discussions.

4.3 Collinear Rigid-Rotator Configurations

Let X be the axis on which the three particles lie. If the masses and coordinates (relative
to the centre of mass) of our particles are, respectively,mi andxi (i ¼ 1, 2, 3), and ifQ is
the angular velocity of the system (found using either Eq. (8) or Eq. (13)), then the initial
conditions of our problem are

r i 0ð Þ ¼ xi ; 0; 0
ÿ �

ð70Þ

and

pi 0ð Þ ¼ 0;miQxi ; 0
ÿ �

: ð71Þ

4.3.1 Orbits and Stability of the Ps¹ and the He (¹)(þ)(¹) Configurations

Setting the masses and charges of electron, positron, proton and neutron as
me¹ ¼ meþ ¼ 1, mp ¼ mn ¼ 2000, andZe¹ ¼ Zeþ ¼ Zp ¼ 1, it can be immediately
verified that, for both systems,k ¼ 1 is the only feasible solution of the 5th-order
equation (7). This is of course what should be expected, given the symmetry of these
systems. Furthermore, both systems fulfill condition (9). In this fashion, the existence of
solutions of the form (¹)(þ)(¹) in Ps¹ and He is theoretically guaranteed. The
respective values for the rotational angular velocities areQ2 Ps¹ð Þ ¼ 3

4 andQ2 Heð Þ ¼ 7
4.

Table 1 shows the values of initial conditions and the resulting orbit is shown in
Fig. 5 a. This configuration is, however, highly unstable. A variation of 10¹9 on one of
the initial momenta suffices to cause self-ionization of the system after about two
revolutions of the electrons (see Fig. 5 b).

Rigid-Rotator and Fixed-Shape Solutions to the Coulomb Three-Body Problem 53



The orbits for the (¹)(þ)(¹) configuration of the helium are analogous to those of
Ps¹, but it is found that He is more stable than Ps¹ for a variation of the same order in
the momenta (lifetime of bound He is about twice the lifetime of bound Ps¹).

4.3.2 The (¹)(¹)(þ) Configuration

As already stated before, it is impossible for Ps¹ or He to conform to a (¹)(¹)(þ)
configuration. We must look instead for systems having eitherm1 Þ m2 or Z1 Þ Z2 (or,
in general, systems fulfilling condition (12)). One particular such system is the one
given by ðm1;m2;m3Þ ¼ ð1;36000;24000Þ and ðZ1;Z2;Z3Þ ¼ ð1;1;6Þ, which can be
thought as formed by an electron, a18F

¹ ion and a nucleus of12C
6þ. This system has

also the desired characteristic of yielding two positive roots to the 5th-order
equation (11), namelyfk1; k2g ¼ f0:04557195;1:449132205g, and only the first of
these roots fulfills condition (14), producing a value ofQ 2

1 ¼ 4:653341. From this
and the fixed inter-particle ratios, the initial conditions can be deduced, giving the
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Table 1. Initial conditions for the motions of different Coulomb three-body systems in various configurations. The
systems are: Ps¹ ion, He atom, and the clusterse¹ þ F¹ þ C6þ and I2¹ þ 2Kr3þ. The configurations are: symmetric
linear rotor (SCR), asymmetric linear rotor (ACR), Langmuir top (LT), Poirier top (PT), fixed-shape solution (FSS),
rotating oscillatory solution (ROS) and space-rotating oscillatory solution (SROS)

System
ith particle; i ¼ 1; 2; 3

Solution Coordinates Momenta

He ¹1.0 0.0 0.0 0.0 ¹1.32287565 0.0
SCR 1.0 0.0 0.0 0.0 1.32287565 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Ps¹ ¹1.0 0.0 0.0 0.0 0.86602540 0.0
SCR 1.0 0.0 0.0 0.0 0.86602540 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Ps¹ ¹0.28284271 0.28284271 0.0 ¹1.22474487 ¹1.22474487 0.0
FSS 0.28284271 ¹0.28284271 0.0 1.22474487 1.22474487 0.0

0.0 0.0 0.0 0.0 0.0 0.0

e¹ þ F¹ þ C6þ ¹0.28284271 ¹0.28284271 0.0 3.05068571 ¹3.05068571 0.0
FSS ¹0.00505894 ¹0.00505894 0.0 1964.332243 ¹1964.332243 0.0

0.00760020 0.00760020 0.0 ¹1967.382929 1967.382929 0.0

e¹ þ F¹ þ C6þ ¹1.0 0.0 0.0 0.0 ¹2.15716055 0.0
ACR ¹0.01788607 0.0 0.0 0.0 ¹1388.992649 0.0

0.02687077 0.0 0.0 0.0 1391.149810 0.0

Ps¹ 0.0 0.25887571 0.62996052 ¹0.44838589 0.0 0.0
LT 0.0 0.25887571 ¹0.62996052 ¹0.44838589 0.0 0.0

0.0 ¹0.51775143 0.0 0.89677179 0.0 0.0

I2¹ þ 2Kr3þ 0.42449697 0.0 0.70090761 0.0 547.8170393 0.0
PT 0.20694524 0.0 ¹0.94509009 0.0 267.0646390 0.0

¹0.41752076 0.0 0.0 0.0 ¹814.8816780 0.0

Ps¹ ¹1.0 0.0 0.0 0.70710678 ¹0.70710678 0.0
ROS 1.0 0.0 0.0 ¹0.70710678 0.70710678 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Ps¹ 0.5 0.0 0.0 ¹0.5 0.35355339 0.5
SROS ¹0.5 0.0 0.0 0.5 ¹0.35355339 0.5

0.0 0.0 0.86602540 0.0 0.0 ¹0.70710678



results presented in Table 1. The trajectories followed by the particles can be seen in
Fig. 4 a.

This configuration is surprisingly stable: The system remains bound for variations
(transversal and radial) of the order of unity on the momentum of particle 1 (the
electron), and particles 2 and 3 admit variations as great as 103 in their momenta. On the
other hand, variations of the order of unity on thex1 coordinate, and of the order of 10¹2

on thex2 andx3 coordinates, cause the system to self-ionize. In Fig. 4 b, a variation of
102 on the radial momentum of particle 2 is shown.

4.4 In-Plane Rotating-Oscillatory Configurations

The configurations to be numerically explored in this section are those in which the
distances between particles ‘‘oscillate’’ (or, in general, have an initial inwards
momentum) on a given initial direction in the plane of the particles, while rotating
about a fixed (Z) axis. Fixed-shape solutions conform to a particular subset of such
configurations. In this manner, we shall deal with the collinear (¹)(þ)(¹) and
(¹)(¹)(þ) configurations. Afterwards, the three-dimensional (in-plane) rotating-
oscillatory configurations will be examined, both in the cases in which the shape
of the triangle (assumed to be equilateral att ¼ 0) is preserved as time evolves, and
in the case in which it is not. The system to be studied in detail is Ps¹, but some
comments on He will be made too (especially regarding its stability compared to that
of the Ps¹).

4.4.1 Fixed-Shape Configurations

A complete family of solutions derived from each of the two types of linear rigid
configurations was obtained in Sect. 3. Different members of the families are identified
by the parameters of the Kepler motion in Eq. (53); these arbitrary parameters are the
amplitude a, eccentricity e and perihelion angled, and they identify members of
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Fig. 5. a: Collinear symmetrical configuration of the positronium negative ion Ps¹. The positron is fixed at
the origin of coordinates.b: Small variation on the (¹)(þ)(¹) configuration for the Ps¹



complete families of solutions. If the motion is observed in a frame rotating with angular
velocity Q, the rigid solutions appear as fixed points and the fixed-shape solutions as
oscillations around those points.

Fig. 6 a shows one fixed-shape solution derived from the collinear (¹)(þ)(¹)
configuration of Ps¹ and Fig. 4 d shows one fixed-shape solution derived from the
collinear asymmetric configuration ofe¹ þ 18F

¹ þ 12C
6þ.

4.4.2 Three-Dimensional (In-Plane) Rotating Oscillatory Configurations

Let X be the axis on which the two electrons lie att ¼ 0 (located symmetrically on both
sides of the origin), andZ the axis on which the positron is located at this same time. IfQ
and q are, respectively, the initial rotating angular velocity (aboutZ) and angular
frequency of the oscillations, and if the initial direction of oscillationv for each electron
(relative to theX axis) is theZ-mirror of the direction for the other electron (while¹Z is
the initial direction of oscillation for the positron), then the more general conditions for
the initial equilateral-triangle configuration (side =r) are
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Fig. 6. Motions of Ps¹ related to the rigid collinear
symmetric configuration.a: Symmetric fixed-shape
solution. b: Long-time behavior of a fixed-shape
solution. The positron remains fixed at the origin of
coordinates.c: Small variation on the symmetric
fixed-shape configuration



r 1 0ð Þ ¼ ¹r=2;0;0ð Þ;

r2 0ð Þ ¼ r=2;0;0ð Þ;

r3 0ð Þ ¼ 0;0; r
���

3
p

=2
� �

ð72Þ

and

p1 0ð Þ ¼ m1yoq cosv;m1Qx1;m1yoq sinv
ÿ �

;

p2 0ð Þ ¼ ¹m2yoq cosv;m2Qx2;m2yoq sinv
ÿ �

;

p3 0ð Þ ¼ 0;0;¹m3yoq
ÿ �

; ð73Þ

where yo is some parameter representing the amplitude of the oscillations. In this
fashion, usingm1 ¼ m2 ¼ m3 ¼ 1, Z1 ¼ Z2 ¼ Z3 ¼ 1, rij 0ð Þ ¼ 1 (i; j ¼ 1, 2, 3), and
making, for example,Q2 ¼ q2 ¼ 1

2 and yo ¼ 1, our initial conditions are completely
determined for a given value ofv.

If we put r ¼ 1 andv ¼ 30◦ in Eqs. (72) and (73), the resulting orbits are those of
Fig. 7 a. It is interesting to observe theXY, XZ, andYZ projections of these orbits. The
enlighteningXY projection is shown in Fig. 7 b.
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Fig. 7. Three-dimensional rotating oscillatory
(¹)(þ)(¹) configuration of the Ps¹. The positron
follows a rectilinear trajectory.a: Rotating oscilla-
tory equilateral triangle for the Ps¹. b: Projection
XY



Another noteworthy configuration (also in the form of a triangle) is the slowly-
rotating and quasi-rigid one, in whichQ2 ¼ 0:1, q2 ¼ 0:9, andyo ¼ 0:01. All these
configurations are very unstable. For helium, things are not better. The system under-
goes self-ionization after two revolutions when subjected to a variation of the order of
10¹9 on one of its momenta.

If now, instead of choosingv ¼ 30◦, we put, for example,v ¼ 45◦ in Eqs. (72)
and (73), the triangle will leave its original equilateral configuration when ‘‘time is turned
on.’’ However, the numerical results show that bound orbits can also be found with
stabilities of the same order as those corresponding to the configuration obtained setting
v ¼ 30◦.

4.5 Rigid Top Configurations

Formulas derived from Eq. (38) for Poirier top must be numerically solved in order to
obtain the initial conditions given in Table 1 (see Fig. 3 b).

General initial conditions for Langmuir top solution can be expressed analytically by

r1 0ð Þ ¼ m3h=m;hD;0
ÿ �

;

r2 0ð Þ ¼ m3h=m;¹hD; 0
ÿ �

;

r3 0ð Þ ¼ ¹2m1h=m; 0; 0
ÿ �

;

p1 0ð Þ ¼ 0;0;¹aqm1

ÿ �

;

p2 0ð Þ ¼ 0;0;¹aqm1

ÿ �

;

p3 0ð Þ ¼ 0;0;2aqm1

ÿ �

; ð74Þ

wherem1 ¼ m2, Z1 ¼ Z2, q is the rotation frequency,h is the distance from particle
3 to the centre of mass of the other two particles,a ¼ m3h=m, and D ¼

½¹1 þ ð4Z3=Z1Þ
2=3ÿ¹1=2. This means thatZ1 # 4Z3. h can also be expressed as a function

of angular momentum in the form

h ¼
2m

m1m
2
3

D3

Z2
1

L2
: ð75Þ

5 Conclusions and Open Questions

In this work, some analytic and general studies of the Coulomb three-body problem
were performed. In particular, regarding the existence of rigid-rotator and fixed-shape
solutions, necessary and/or sufficient conditions (involving the dynamical and geo-
metrical parameters of the system) were deduced. Besides, some expressions from
which physically relevant quantities (e.g., inter-particle distance ratios, rotational
angular velocities) of these configurations can be inferred were also found.

The general results of Sects. 2 and 3 are, up to the authors’ knowledge, new. Even
though the impossibility of the existence of a plane rigid rotating solution for the
Coulomb three-body problem had been mentioned as an intuitive physical fact (see ref.
[9]), its proof has only been given in the present work.

Through the numerical exploration of some particular systems, Sect. 4 shows the
existence of the configurations predicted by the theory developed in Sects. 2 through 3,
as well as some in-plane oscillating-rotating three-dimensional solutions. This last kind

A. Santander et al.58



of solutions lacks a general theoretical analysis, while the methods of Sect. 3 are a first
approach to their study. Sect. 4 also shows that most of the orbits involving a high
degree of symmetry in the initial conditions are very unstable, whereas non-symmetric
configurations [as the (¹)(¹)(þ)] are significantly more stable.

This work leaves many open questions. Some of them are:

• In order to perform an analytic stability analysis of the general collinear configura-
tions, it would be necessary to know the solution to the general 5th-order equations (7)
and (11). Even though this task is not feasible (as demonstrated by the mathematician
Abel), perhaps conditions (9), (12), and (14), which establish some mathematical
constraints on these 5th-order equations so that they have physically meaningful
roots, could help to draw more particular conclusions related to these relevant roots.

• The systeme¹ þ 18F
¹ þ 12C

6þ studied numerically in Sect. 4, is hardly obtainable in
real physical situations. It would therefore be desirable to study other systems with a
more realistic experimental feasibility.

• The static configuration and the corresponding uniform-motion solution, which
conforms to real systems like Be4þ þ e¹ þ Be4þ, could be explored by using
quantum mechanics in order to determine its experimental relevance. This config-
uration could also be relevant for the trapping of a classical electron between two
heavy centres in collisions of the Be3þ and Be4þ ions.

• A special case involving a triple collision was found in this work. It shows the
possible relevance of studies on the regularization of general triple collisions.
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