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Abstract

We attempt to construct Lyapunov exponents for quantum mechanical

systems. Lyapunov exponents have always been a key concept of classical

chaotic dynamics, but difficult to use in a quantum context. By con-

structing a semi-classical potential from the ground state wavefunction of

a system and analyzing the classical dynamics produced by this potential,

one can use concepts from classical dynamics, such as Lyapunov expo-

nents, to probe the dynamics of the quantum system. In this manner, we

find non trivial corrections to the classical dynamics arising from quan-

tum information: the chaotic behavior is suppressed although not entirely

eliminated.

1 Introduction

The concept of Lyapunov exponents, which characterize the phase-space diver-
gence of infinitesimally neighboring trajectories for dynamical systems, has long
been a useful criterion for the identification of chaotic systems. However, since
by construction they rely on the idea of a point trajectory in phase space, their
application to quantum mechanical problems has proved elusive. The domain of
“quantum chaos” is a murky one, even the very definition of the term not being
clear, and the problem of not having the analog of classical trajectories is at
the heart of the matter. For an introductory review which analyzes a classical
example, the kicked rotor, see [1]. Gutzwiller [2] provides a comprehensive study
of the problem, with many of his original contributions to the field.

Quantum mechanics describes the world using a radically different language
from that of classical mechanics. For problems with time-independent potentials—
the case we consider here—the dynamics is trivially integrated out and the only
remaining question of interest is the eigenmode structure of the potential and
associated boundary conditions. It then appears as if the wave nature of quan-
tum systems and the resulting interference phenomena might “wash out” the
rich classical dynamics, leaving only a smooth landscape of wavefunctions.
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The obvious question which now arises is that posed by the correspondence
principle: in the limit of high quantum numbers, where we expect the quantum
behavior to somehow smoothly blend into the classical one, how can this occur?
For classically integrable systems the WKB idea provides some insight, but
these are precisely the cases where the classical dynamics is simple, ultimately
reducible to oscillatory motions in many dimensions (via action-angle variables).
However, classically chaotic systems appear untractable by this approach: a
knowledge of all periodic orbits is needed, and for a chaotic system these form
a dense set in phase space. Great progress has been made in the use of so called
trace formulas [2], but we still lack a true understanding of the connection
between classical chaotic dynamics and quantum mechanics.

One avenue of attack to the problem, inspired in ideas originally proposed
by D. Bohm in 1952 [3], considers a the wavefunction of a quantum system as
a field which physically drives the dynamics of classical point particles. Much
work has been devoted in recent years to this approach ([4]-[10]), from prov-
ing rigorously that all of the usual results of “traditional” quantum mechanics
can be recovered by interpreting quantities appropriately, to using the result-
ing classical dynamics to define quantum Lyapunov exponents and probe the
classical-quantum correspondence in new ways.

This paper follows an idea of similar nature, but different in the particulars.
We will also construct a classical potential from the quantum problem and then
probe the resulting “mixed” or semi-classical dynamics, study the evolution of
orbits and compare to the purely classical problem. However, the semi-classical
potential will be obtained using a prescription for a supersymmetry improvement
to WKB methods.

We will use the method to analyze a nonlinear oscillator described by the
potential V (x, y) = 1

2
(x2 + y2) + 4kx2y2, whose classical dynamics (chaotic for

k 6= 0) will be studied and compared with the resulting semi-classical dynamics.

2 The semi-classical potential

Consider a two dimensional quantum particle of mass m in a potential V (x, y),
with ground state wavefunction ψ(x, y). Without loss of generality we can write

ψ(x, y) = N exp(−W (x, y)/h̄) (1)

where N is a normalization constant. Using Schrödinger’s equation

[

− h̄

2m
∇2 + V (x, y)

]

ψ(x, y) = Eψ(x, y) (2)

we can then obtain the following formal expression (from now on we let m = 1)

U(x, y) ≡ V (x, y) − E =
h̄

2

∇2ψ(x, y)

ψ(x, y)
(3)
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It is customary in the literature to define

Φ(x, y) ≡ 1√
2
∇W (x, y) (4)

which using (1) allows us to write U(x, y) as

U(x, y) = Φ2(x, y) − h̄√
2
∇ · Φ(x, y) (5)

or equivalently
U(x, y) = Utree(x, y) + Uloop(x, y) (6)

with the obvious definitions

Utree(x, y) ≡ Φ2(x, y)
Uloop(x, y) ≡ − h̄

√

2
∇ · Φ(x, y)

(7)

The designations “tree” and “loop” for the two parts that make up U(x, y)
come from a supersymmetry inspired analysis which we will not cover here. See
[11] for a detailed discussion of the applications of supersymmetry to classical
and quantum mechanics. The essential fact which we will use here is a realization
made in 1985 by Comtet, Bandrauk and Campbell [12] that using Utree(x, y)
one could construct a WKB-type formula which gives far better results than
the traditional one, and which for a class of potentials known as shape invariant

provides an exact solution.
This SUSY WKB formula (for a one-dimensional system), is to lowest order

in h̄ given by

∫ b

a

dx
√

2m [En − Φ2(x)] =

∫ b

a

dx
√

2m [En − Utree(x)] = nπh̄, (8)

where a and b are the classical turning turning points for Utree(x): En =
Utree(a) = Utree(b). The remarkable successes of this formula suggest that some-
how the potential Utree “knows” about the structure of the quantum poblem,
and can successfully use this information in a semiclassical context. This led us
to attempt using it to study the connection between the quantum and classical
regimes for a chaotic system.

Utree is explicitly given by

Utree(x, y) =
h̄2

2

[

∇ψ(x, y)

ψ(x, y)

]2

(9)

and it is interesting to note that for the case when our system of study is regular,
k = 0, one can easily show (since the ground state exact wavefunction is readily
available) that Utree(x, y) = V (x, y). However as we will later see, for the
classically chaotic cases (k 6= 0) this is not the case and interesting differences
appear.
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3 Numerical procedure

Our roadmap is to first solve the quantum problem for a given value of k,
computing the ground state wavefunction ψ(x, y). Using this we then construct
the semiclassical potential Utree(x, y) and use it to solve the classical dynamics.

3.1 The quantum problem

To solve the time independent Schrödinger equation we used the Finite Element
Method (FEM) [13]. This is a variational type method which uses a local basis
instead of the single global function used in traditional variational calculations.

Even though the idea of the method is very simple to state, the programming
can become quite involved because of bookkeeping issues. We will not go into
details here, simply stating the basic philosophy behind the FEM: we break the
region of interest into many small elements where we perform a variational solu-
tion using fairly simple trial functions. The global solution is then constructed
by matching all the local solutions across element boundaries. The elements at
the outside boundary of the region account for the global boundary conditions
of the problem. The variational solution for the local functions leads to the
solution of a generalized eigenvalue problem, which can be done with many of
the available libraries of numerical routines. Our program uses routines from
Numerical Recipes [14], but any other standard library such as EISPACK would
equally work.

This approach allows great flexibility since one can arbitrarily improve—
within the obvious time and memory constraints—the quality of the solution
by adding more elements as needed. If the problem is such that significantly
different length scales need to be considered in different regions, the method can
be adapted by distributing the element grid in a non uniform way, with denser
coverage in the areas with short relevant length scales.

Another important property of the FEM is that by choosing sufficiently
smooth local trial functions one can construct a global solution with any neces-
sary degree of smoothness: continuity in the solution, its first or even its second
derivatives (as long as such derivatives exist in principle, from a mathematical
standpoint). This is very important for our problem because Utree(x, y) needs
∇ψ(x, y). In this project we have used a grid with 9 elements and 3 nodes per
element, and Hermite interpolation polynomials1 which guarantee continuity in
the first derivative of the solution.

In summary, the FEM is capable of providing very accurate solutions but
is fairly expensive computationally: the size N of the matrices involved is
N ∼ (Nnodes)

2
, where Nnodes is the number of nodes per side on the grid. Solv-

ing an N ×Ngeneralized eigenvalue problem for large N can be quite a daunt-
ing task, and obviously the memory requirements become quickly prohibitive:
Mem ∼ 384 (Nnodes)

4 Mb! The 384 factor is for a solution with continuous first
derivative, in double precision.

1These should not be confused with the Hermite polynomials Hn(x) used in the analytical
solution of the quantum simple harmonic oscillator. See [13] for details.
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3.2 The semi-classical problem

A fifth order adaptive Runge-Kutta integrator [14] was used to solve the classical
equations of motion both for the classical potential V (x, y) and the semi-classical
one Utree(x, y). See the Appendix for part of this code. At every point (x, y) of
integration of the equations of motion, the program calculates the force acting
on the particle using the two-point centered formula

Fx(x, y) = −Utree(x+ h, y) − Utree(x− h, y)

2h
, (10)

with a similar expression for Fy(x, y).
Two initially nearby orbits were computed and their separation in phase

space was tracked, defined as

δ(t) ≡
√

[x2(t) − x1(t)]
2

+ [y2(t) − y1(t)]
2

+ [vx2(t) − vx1(t)]
2

+ [vy2(t) − vy1(t)]
2

(11)
The Lyapunov exponent for a given pair of initially nearby trajectories can

then be estimated by making the assumption that

δ(t) ∼ eλt. (12)

A positive value for λ signals chaotic behavior, since trajectories which start
arbitrarily close will diverge exponentially fast.

For the calculation of the Poincaré sections a separate program was used
(which had been previously developed). It integrates only the classical equa-
tions, but using an extremely accurate method which exploits the symmetries of
V (x, y) to produce a very high order method capable of long time integrations
with minimal error. Details of this will not be given here as this was previous
work not done during this course, a description of the algorithm can be found
in [15]. The Poincaré sections are computed by detecting when the trajectory
has crossed the surface and reverse integrating along the orbit (after a suitable
reparametrization) in order to avoid all interpolation errors [16].

4 Analysis of the system as k is varied

We will now present results for our 2-d non-linear oscillator with potential

V (x, y) =
1

2
(x2 + y2) + 4kx2y2

as we vary k from k = 0 where the system is regular to k = 4 where full chaos
has developed.

A plot of V (x, y) for k = 2 is shown in Fig. 1, with contours which clearly
show the highly non-linear nature of the potential.

All orbits shown here for different values of k were generated with initial
conditions (x0, y0) = (1, 0), (vx0, vy0) = (0, 1), which gives the system an total
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Figure 1: Classical potential V (x, y) for k = 2.

energy E = 1. Since this is the ground state energy (in units of h̄) for the
quantum system (at k = 0) it was taken as a reference energy suitable for the
whole study. To compute the separation of orbits we let evolve a second initial
condition with x

′

0
= x0 + ε, ε = 10−5 and all other values equal.

4.1 The linear case (k = 0)

The trajectories in the linear case are as we know just circles, both classical
and semi-classical, they are presented in Fig. 2. As we mentioned before, for
k = 0 one can show analytically that Utree(x, y) = V (x, y) so it is no surprise
that both the classical and semi-classical trajectories come out identical. It is,
however, a nice check for the quality of our numerics.

The phase space separation δ(t) is plotted in Fig. 3: we see that the classical
orbit is perfectly regular, and for the semiclassical one the small growth of δ(t)
simply signals numerical noise which is more significant (as expected) for the
semiclassical case. One should remember that δ(t) is the phase space separation
for two initially very close trajectories for each case (classical or semiclassical),
it isn’t a comparison between classical and semiclassical. That comparison is
made by looking at both δclass(t) and δsemiclass(t), since they are in general
computed for different potentials (Utree(x, y) 6= V (x, y) for all k 6= 0).

4.2 Non-linear behavior at k = 0.2

For k = 0.2, two nearby classical orbits are shown in Fig. 4. In Fig. 5 we
plot both the classical and semi-classical orbits starting from the same initial
condition, and already the effects of the different potentials are visible.

The divergence of the trajectories for both potentials is shown in Fig. 6. We
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Figure 2: Classical and semi-classical trajectories for k = 0.
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Figure 3: Phase space separation δ(t) between two initially very close trajecto-
ries for both the classical and semi-classical cases.
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Figure 4: Evolution of two nearby classical orbits for k = 0.2.
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Figure 5: Comparison of the classical and semi-classical orbits for k = 0.2.
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Figure 6: δ(t) for both classical and semi-classical orbits at k = 0.2.

start here to see the interesting phenomenon, which has been previously reported
using different methods of analysis, of quantum suppression of classical chaos.
While for the classical case we find a Lyapunov exponent λc ≈ 0.15, for the
semiclassical one we see λsc ≈ 0.052. Since this is a logarithmic quantity, such
a difference is significant even with our crude estimations.

A look at the classical Poincaré section for k = 0.2 in Fig. 7 shows that the
system already has regions of chaotic behavior, even though regular ones still
persist. This is exactly the kind of transition to chaos scenario predicted by the
celebrated KAM theorem [17].

4.3 Behavior at k = 1

The non-linear effects are obviously stronger for k = 1. The classical orbits are
shown in Fig. 8 and the “quantum” (semi-classical) ones in Fig. 9. By now the
difference between the two scenarios is very marked, with the classical behavior
having become basically chaotic but the semiclassical one still very regular.

If we superimpose one classical with one semi-classical orbit (Fig. 10) this
difference is very apparent: while the classical trajectory explores most of the
available configuration space, the semiclassical one remains confined to a smaller
region and evolves in a much more regular manner.

The phase space distance δ(t) shows also these differences (Fig. 11), and we
estimate for the Lyapunov exponents the values λc ≈ 0.45 and λsc ≈ 0.05.

This behavior comes from the marked difference between Vclass(x, y) and

2These values have been estimated by an “eye-fit” to δ(t) in the region before its value
saturates, so they must only be taken as rough estimates and not as numerically accurate.
What is of interest to us here is the clear difference between the classical and semi-classical
behavior, already apparent from the δ(t) plots.
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Figure 7: Poincaré section for the classical potential V (x, y) at k = 0.2.

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

Traj.#1
Traj.#2

Figure 8: Evolution of two nearby classical orbits for k = 1.
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Figure 9: Evolution of two nearby semi-classical orbits for k = 1.
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Figure 10: Comparison of the classical and semi-classical orbits for k = 1.

11



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

δ(
t)

time

Classical
Semi-classical

Figure 11: δ(t) for both classical and semi-classical orbits at k = 1.

Utree(x, y), as seen in Figs. 12 and 13. The contours at the base of the plots
show clearly that Utree(x, y) is a more linear potential than Vclass(x, y), even
though both correspond to the same k value.

4.4 Fully developed chaos at k = 4

When we reach k = 4 both systems have developed chaotic behavior, even
though differences remain. Classical and quantum orbits are plotted in Figs. 14
and 15 (two initially nearby orbits per plot) and the chaotic motion is apparent
in both cases. The orbits cover essentially all of the available configuration
space, as can be seen by comparing the shape of the resulting dark region with
the contours for both potentials (Figs. 17 and 18).

However, the quantum system still shows suppression of chaos, as evidenced
by a plot of δ(t) in Fig. 16, from which we estimate the values λc ≈ 1.2 and
λsc ≈ 0.4. Both systems have become chaotic, but the divergence of nearby
orbits is slower for the semi-classical one.

The difference in the potentials is quite clear, and we show plots of both using
two different vertical scales: in Figs. 17 and 18 the maximum value plotted is
1, so we are only seeing the region actually available to our test particles (since
they both start with energy E = 1 and the system is conservative). In Figs 19
and 20 we plot up to E = 10 to show the full shape of the potentials.

The fact that our system is fully chaotic at k = 4 is readily apparent from
the Poincaré surface of section shown in 21: a single trajectory covers the entire
available phase space, meaning that no torus structure remains. The only inte-
gral of the motion is now the energy E and the behavior is essentially ergodic.
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Figure 12: Classical potential Vclass(x, y) for k = 1.
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Figure 13: Semi-classical potential Utree(x, y) for k = 1.
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Figure 14: Evolution of two nearby classical orbits for k = 4.
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Figure 15: Evolution of two nearby semi-classical orbits for k = 4.
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Figure 16: δ(t) for both classical and semi-classical orbits at k = 4.
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Figure 17: Classical potential Vclass(x, y) for k = 4.
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Figure 18: Semi-classical potential Utree(x, y) for k = 4.
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Figure 19: Classical potential Vclass(x, y) for k = 4, using a different vertical
scale from that of Fig. 17.
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Figure 20: Semi-classical potential Utree(x, y) for k = 4, using a different vertical
scale from that of Fig. 18.
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Figure 21: Poincaré section for the classical potential V (x, y) at k = 4.
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Figure 22: δ(t) for various values of k for the classical potential.

5 A global look at orbit divergence.

We finally make a comparison between the classical and semi-classical cases by
plotting δ(t) for the several values of k analyzed on the same plot (Figs. 22 and
23).

It is clear how the classical system makes the transition to chaos fairly
rapidly, with only the k = 0 case being truly regular. In contrast, the semi-
classical system remains reasonably regular for all values of k up to k = 4 (since
δ(t) is shown on a logarithmic scale the differences are very significant).

6 Conclusions and Outlook

• We have found the potential Utree(x, y) to provide non-trivial quantum
corrections to the classical behavior. A quantum suppression of chaos is
observed but not a complete elimination of the phenomenon, since even-
tually even the semi-classical system shows chaotic behavior.

• Our analysis has an important limitation: we have taken a look at single
trajectories for all the comparisons, and a more sensitive probe would be to
construct Poincaré sections for Utree(x, y). This would be useful to clarify
how phase space is globally affected by the quantum effects. It was not
done as part of this project because of time constraints but can be easily
done in the near future, since it requires only straightforward extensions
to the existing numerical tools.

• A 2-d SUSY WKB? It would be very interesting to make a 2-d exten-
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Figure 23: δ(t) for various values of k for the semi-classical potential.

sion of SWKB, since we have seen how the quantum potential Utree(x, y)
carries non-trivial information from the quantum to the classical regime.
However, this is immensely difficult in fully chaotic regimes because one
needs all periodic orbits of the system, but for a chaotic system these
orbits are dense in phase space. This is truly the heart of the difficulty of
understanding how a classically chaotic system behaves in the quantum
regime, and it is interesting to mention that as far back as 1917 Einstein
already had a glimpse of the formidable problems lying here.

• However, maybe for small k the quantum suppression of chaos is enough to
allow the WKB approach... This is just an idea mentioned as a possibility
for future exploration, since it might allow to probe the quantum non-
perturbative regime in a novel way.
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