
Python for Scientific Computing at CSE09 ∗

Fernando Pérez
University of California, Berkeley

Hans Petter Langtangen
Simula Research Laboratory

Randy LeVeque
University of Washington, Seattle

January 26, 2010

For the SIAM CSE09 meeting, we organized the 3-part minisymposium Python for Scientific Com-
puting, where a mix of speakers from universities, government research laboratories and indus-
try showed why they chose the Open Source Python programming language and how they use
it in their research and teaching. The sessions were well attended, as was a similar 3-part min-
isymposium at the annual meeting last summer.

A flexible tool

Over the last few years, Python has experienced tremendous growth as the tool of choice for
high-level scientific computing. It offers an effective mix of interactive and exploratory devel-
opment, direct access to libraries for many different tasks, and interfaces with high-performance
numerical libraries in Fortran, C or C++.

Scientists coming from computational environments such as MatlabTM or IDLTM will find that
Python, with a few free add-on packages, provides basic capabilities similar to these systems:
numerical arrays with syntactic support for arithmetic and mathematical operations, a compre-
hensive library of common algorithms (linear algebra, FFTs, numerical integration, optimiza-
tion, special functions, etc.), interactive control of data visualization, publication-quality plot-
ting and modules to interface with codes written in numerous other programming languages.
But what is attracting many scientists to the language is a combination of flexibility, expressive
power and development possibilities that is unmatched by commercial tools.

Python was originally designed as a general-purpose language with an emphasis on a very clear
and readable syntax, high-level constructs that did not impede access to low-level resources,
robust error handling and portability. It ships with a comprehensive standard library that covers
many common tasks, from text processing to network protocols or database access. In addition,
free projects exist that add support for most common computational needs, as well as providing
bindings to use a wide collection of Fortran, C and C++ libraries. It is used today extensively in
industry by companies like Google (who employs Python’s creator, Guido van Rossum), but also
by most federal research agencies in the USA, as was illustrated by the presence of speakers from
several National Laboratories and NIST. Python offers zero licensing cost and hence no license
manager hassles (important considerations when you need to run parallel codes on hundreds or
thousands of processors or use cloud computing services), as well as being extremely portable:
it can be run equally on a cell phone as on the nation’s largest supercomputers.

∗Published with minor edits as F. Pérez, H-P. Langtangen and R. LeVeque, Python for Scientific Computing at CSE09,
SIAM News, 42:5, 4 (2009). http://www.siam.org/news/news.php?id=1595

1

http://www.siam.org/meetings/cse09/
http://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=8044
http://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=7369
http://www.siam.org/news/news.php?id=1595


30

70
>70 = overbought

<30 = oversold

RSI (14)

AIG daily

20

40

60

23-Mar-2009 O:1.50 H:1.54 L:1.40 C:1.48, V:240.3M Chg:-0.02

MA (20)

MA (200)

Jun 2007

Sep 2007

Nov 2007

Feb 2008

Jun 2008

Sep 2008

Nov 2008

Feb 2009

8

4

0

4 MACD (12, 26, 9)

Figure 1: AIG’s recent stock performance, elegantly summarized by matplotlib.

A mix of topics, from research to education

The talks covered both general purpose tools and domain-specific projects (all materials are
available online1). A group of speakers focused on interactive, exploratory computing and
data visualization: Fernando Pérez from UC Berkeley discussed the IPython system of com-
ponents for interactive computing, and Brian Granger from Cal Poly San Luis Obispo covered
IPython’s applications for high-level parallel computing as well as the design of distributed data
structures. John Hunter from Tradelink, the lead developer of the matplotlib plotting package,
presented an overview and hands-on demonstration of the project, whose goal is to provide
exceptionally high quality two-dimensional plots (see Figure 1). Hank Childs from Lawrence
Livermore National Laboratory followed this up with a discussion of VisIt, a package for the
analysis and visualization of large-scale three-dimensional data sets such as those produced us-
ing adaptive mesh refinement on massively parallel machines. While VisIt has its own GUI
interface, it also has a Python interface that makes it particularly convenient for incorporating
in other projects. Figure 2 shows a visualization done with VisIt, which uses the high-quality
VTK 3D graphics library, combining multiple rendering options for displaying elevation data
of Mount St. Helens. Figure 3 shows a visualization done with Mayavi2, a related Python tool
based on the same toolkit as VisIt, the high-quality VTK 3D graphics library.

Another group of talks covered tools with a focus on performance: Andreas Klöckner, from
Brown University, showed how to easily access the capabilities of modern high-performance
graphics cards for numerical computing with his PyCuda library, while Pearu Peterson from
the Institute of Cybernetics at Estonia’s Tallinn University of Technology presented his research
on the algorithmic and data structure problems involved in designing sympycore, a fast library
for symbolic computing in Python. A presentation by Lisandro Dalcín from the Argentinean
CIMEC research laboratory and Brian Granger covered the mpi4py library that permits the de-
velopment of MPI codes in Python. mpi4py allows both the calling of MPI primitives in pure
Python and accessing C or Fortran MPI codes (even both in the same process) directly, often
with minimal performance loss. Tony Drummond from Lawrence Berkeley National Laboratory

1URL: https://cirl.berkeley.edu/fperez/cse09

2

http://matplotlib.sourceforge.net/examples/pylab_examples/finance_work2.html
http://ipython.scipy.org
http://matplotlib.sourceforge.net
https://wci.llnl.gov/codes/visit
http://code.enthought.com/projects/mayavi/
http://mathema.tician.de/software/pycuda
http://code.google.com/p/sympycore/
http://code.google.com/p/mpi4py/
https://cirl.berkeley.edu/fperez/cse09


Figure 2: Topographic visualization of Mount St. Helens performed with Lawrence Livermore
Lab’s VisIt software.

Figure 3: 3D interactive data visualization with Mayavi2 and IPython.

3



presented the PyACTS project that provides Python interfaces to the ACTS collection of high-
performance codes (Aztec, Hypre, PETSc, SLEPc, ScaLAPACK, SUNDIALS, SuperLU, TAO and
OPT++). Similar efforts of this type include PyTrilinos and petsc4py for using Trilinos and PETSc
from Python. Jon Guyer from NIST showed the architecture of the FiPy project, a finite volume
PDE solver developed by his group that exploits Python tools like NumPy, SciPy, matplotlib,
and PyTrilinos to successfully tackle materials science problems – with an easy to use syntax
for model description. Then, Aric Hagberg from Los Alamos National Laboratory presented the
NetworkX project, a library of algorithms for studying complex networks that illustrates Python’s
strengths well: an algorithmic core with rich functionality coupled to multiple visualization li-
braries that provide alternative means of looking at networks. These visualization systems may
be written in other languages, but via Python, they can all be used to render the results from
NetworkX’s with a unified interface.

But Python is not only a research tool: the day was bracketed by two presentations illustrating
its many benefits for scientific computing education. Hans Petter Langtangen from Norway’s
Simula Research Laboratory described how the University of Oslo has successfully implemented
a major reform of computational science teaching using Python as its foundation. Their students
learn Python and numerical methods in the very first semester and apply these tools in a range
of science courses across the University. Towards the end of the day, Joe Harrington from the
University of Central Florida described an attempt in 2007 to replace IDL with Python in his
course on Astronomical Data Analysis, with poor results because of documentation issues. He
responded by organizing and funding the SciPy Documentation Project during the summer of
2008. Results were dramatic: students in his fall 2008 class learned more and spent less time
than students in the IDL-based class.

Python’s use in education is growing and its impact can be seen at both ends of the spectrum:
while in the United States the NSF funds the SECANT project to develop a Python-based cur-
riculum and workshops for interdisciplinary computational science education, the One Laptop
Per Child project provides children in difficult conditions with laptops loaded with Python-
based software they can inspect, learn from and modify.

Open tools and reproducible research

At the CSE conference SIAM emphasized the growing acknowledgment that computational re-
search must be truly reproducible. All attendees to the conference received in their registration
packet the January issue of Computing in Science and Engineering, a special issue focused on Re-
producible Research. Python is an excellent platform on which to build a work flow where every
step can be validated and reproduced by anyone: its open source nature and zero cost means
that there are no barriers for anyone to use it, and all of its internals are open to inspection. Using
Open Source tools to build our computing foundation facilitates this core principle of the scien-
tific process in our discipline: every project discussed in this minisymposium is freely available
for all to download, use, verify and improve upon. We hope the community of scientists build-
ing tools in this manner will continue to grow; the Python projects for scientific computing are
rapidly maturing, becoming better integrated and documented, more powerful and easier to
use. Join us!

Readers interested in learning more about these tools can visit the SciPy website, which hosts
some of these tools and contains links and information to many more related projects.

We would like to thank the speakers of the minisymposium for their participation as well as for
their careful reading and comments on the drafts of this article.

4

http://wiki.python.org/moin/PyACTS
http://trilinos.sandia.gov/packages/pytrilinos/
http://code.google.com/p/petsc4py/
http://www.ctcms.nist.gov/fipy/
http://networkx.lanl.gov/
http://secant.cs.purdue.edu/
http://scipy.org

