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S C I E N T I F I C 
P Y T H O N

As the relationship between research and computing evolves, new tools are required to not 
only treat numerical problems, but also to solve various problems that involve large datasets 
in different formats, new algorithms, and computational systems such as databases and 
Internet servers. Python can help develop these computational research tools by providing  
a balance of clarity and !exibility without sacri"cing performance.

Python: An Ecosystem  
for Scienti!c Computing

S cienti!c computing, a discipline at the 
intersection of scienti!c research, engi-
neering, and computing, has tradition-
ally focused either on raw performance 

(in languages such as Fortran and C/C++) or gen-
erality and ease of use (in systems such as Matlab 
or Mathematica), and mainly for numerical prob-
lems. Today, scienti!c researchers use computers 
for problems that extend far beyond pure numerics, 
and we need tools "exible enough to address issues  
beyond performance and usability.

As we describe here, the Python programming 
language, augmented with a stack of open source 
tools developed over the past decade by a diverse 
group of scientists and engineers, provides a com-
putational ecosystem that is quite capable of tackling 
these new challenges.

Scienti!c Computing’s  
Changing Landscape
For a long time, scienti!c computing was focused 
almost exclusively on raw performance for "oating- 
point numerical tasks. It’s no accident that For-
tran is an abbreviation of formula translator: for 
a long time, computing numerical formulas was a 
computer’s main purpose. Today, however, scien-
ti!c computing’s algorithmic needs go far beyond 
"oating-point numerics. Despite the lasting im-
portance and usefulness of array-oriented libraries 
such as Lapack (and its many descendants), mod-
ern scienti!c codes routinely tackle problems that 
go beyond number crunching with arrays.

Problems such as graph traversal, !nite state 
machines, or branch and bound algorithms are 
now a staple of many scienti!c codes.1 These re-
quire data structures beyond simple arrays and 
use code full of logic and integer manipulations 
that is quite different from what tools like Lapack 
are good at. In addition, even today’s numerical 
work has needs beyond hardware "oating point, 
as many current problems of interest require in-
tegrated access to arbitrary precision integers, 
rationals, and "oating-point numbers, often in 
combination with symbolic manipulation.

The Python tool stack doesn’t attempt to re-
place the many critical codes and algorithms 
with versions written in Python. Rather, the ap-
proach is to expose those codes through Python 
wrappers while providing rich data structures and 
programming paradigms to tackle problems not 
easily managed with high-performance comput-
ing’s traditional data structures. Although Python 
isn’t unique in possessing rich data structures 
(C++ has them as well), it’s particularly good at 
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14 COMPUTING IN SCIENCE & ENGINEERING

interoperating with multiple languages’ struc-
tures and with a syntax accessible to scientists who 
aren’t programmers.

Computing’s role in science and engineering 
has also exploded beyond strictly algorithmic 
needs. A range of factors has driven this trans-
formation including the Internet, ever-improving 
hardware, online collaboration tools, the rise of 
“data driven” science, and open source software 
development models. As an integral part of their 
research efforts, scientists today develop compu-
tational tools to tackle tasks as varied as

• accessing data and results over a network, often 
with custom protocols;

• exposing codes and data via Web applications;
• interacting with databases;
• integrating components written in multiple 

programming languages, and integrating tools 
and libraries from multiple scienti!c disciplines;

• providing graphical user interfaces (GUIs) to 
scienti!c codes;

• working with data in a wide range of formats, 
including binary, XML, JavaScript Object No-
tation (JSON), and Hierarchical Data Format 
(HDF5);

• controlling and interfacing with a range of 
hardware devices;

• parallelizing programs to run on GPUs, clus-
ters, multicore CPUs, and supercomputers; and

• collaborating with large, geographically dis-
tributed teams of scientists, programmers, and 
engineers on computationally based research, 
software, and data.

Originally, computational resources (cycles, 
memory, and storage) were scarce, and human 
development time was comparatively cheap. 
Over time, this balance inevitably shifted; ease 
of use and development have become increas-
ingly important considerations, as evidenced by 
the rise in popularity of high-level computing 
environments.

First, the 1980s brought the rise of systems—
such as Matlab and IDL (the Interactive Data 
Language)—that effectively encapsulated Fortran 
libraries behind a friendly user interface with ac-
cess to rich functionality, interactive exploration, 
and immediate data visualization. Later, systems 
with symbolic capabilities and arbitrary preci-
sion numerical support, such as Mathematica and 
Maple, became extremely popular. Such systems 
made entirely new kinds of computations possible 
that couldn’t be tackled with a reasonable pro-
gramming effort in plain Fortran or C.

All such systems provide interactive exploratory 
environments that make language features and 
libraries immediately available to scientists who 
can use them to explore a problem domain. This 
contrasts with the classical edit/compile/run cycle 
of C or Fortran programming, which typically re-
quires separate computation and post-processing/
visualization steps.

An interactive environment offers much more 
"exibility in using the computer as an exploration 
tool; the code evolves as scientists better under-
stand a problem by performing small, incremental 
computations that lead to a complete program.

The challenges of modern scienti!c computing 
that we have discussed are hard to address purely 
with languages such as Fortran and C/C++. In-
deed, they require computational expertise dif-
ferent from the scientist’s typical training in 
writing fast for loops, and some problems aren’t 
merely technical but have social aspects as well, 
such as developing tools collaboratively over the 
Internet.

Although the high-level environments we’ve 
mentioned have proven extremely useful, the 
carefully conceived Python programming lan-
guage combined with a "exible stack of compo-
nents provides a comprehensive ecosystem in 
which even better solutions can be constructed. 
Building free and open source codes for scienti!c 
problems is also consistent with the research goals 
of transparency and reproducibility.

Python: A General Purpose  
Programming Language
Most tools that we’ve mentioned so far, from 
Fortran to Mathematica, have one thing in 
common: they were designed primarily with 
mathematical and technical computing in 
mind. Fortran has arrays and mathematical func-
tions de!ned as !rst-class entities in the language; 
Matlab has native syntax to express common lin-
ear algebra operations; and Mathematica symbols 
are all valid entities without declarations, so ex-
pressions can involve arbitrary symbol sets.

This design focus offers important bene!ts: 
many everyday mathematical tasks can be per-
formed with a compact and familiar syntax; the 
tool’s abstractions can map well to many sci-
enti!c domains; and there’s often considerable 
out-of-the-box functionality for doing nontrivial 
scienti!c computing. Writing sophisticated user 
interface applications that integrate numerics 
with visualization—while talking to databases 
and handling custom user input—is possible but 
dif!cult in some custom scienti!c languages (such 
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as Matlab) and practically impossible in others  
(such as R).

Background and Overview
In contrast, Python was designed as a general-
purpose language. Python’s creator, Guido van 
Rossum, has written a detailed series of articles 
on the language’s history (see http://python- 
history.blogspot.com). Python was born in the early 
1990s as a general-purpose “glue” language at the 
CWI (the Centrum voor Wiskunde and Infor-
matica), the birthplace of ALGOL 68 (Algorithmic 
Language 68). Prior to this, van Rossum had worked 
on the ABC programming language, developed at 
the CWI as a teaching language that emphasized 
clarity. Although the ABC project was ultimately 
shut down, van Rossum took many lessons from it 
when he started to write Python as a tool for use in 
multimedia and operating systems research proj-
ects. He wanted Python to be high-level enough  
to be easy to read and write, while also—in sharp 
contrast to Java and key to our purposes—offering  
direct access to low-level capabilities, as well as 
offering easy portability and a well-de!ned error 
model based on exceptions.

Python is a dynamically typed language with a 
rich set of native types. Its number hierarchy in-
cludes native arbitrary-length integers, hardware- 
precision "oating-point and complex numbers, 
and library support for rational numbers and ar-
bitrary precision "oating point. It also has pow-
erful strings, variable-size lists, sets, and very 
"exible associative arrays called dictionaries in 
Python. These types give Python a rich vocabu-
lary in which to express many complex algorith-
mic questions with clarity and ef!ciency. We can 
illustrate this expressive power with a fully func-
tional implementation of the classic QuickSort.

QuickSort is one of the simplest sorting algo-
rithms to achieve O (n log n) complexity with a  
divide-and-conquer approach. The basic algo-
rithm without optimizations is easy to explain, but 
tedious to implement in C or Fortran. As Figure 1  

shows, it can be implemented in Python in six 
lines. It’s interesting to note how similar this code 
example is to the pseudo-code that expresses the 
algorithm on Wikipedia; such clarity and simplic-
ity of expression have caused some to refer to Py-
thon code as “executable pseudo-code.”

Furthermore, Python is an object-oriented 
language that lets users rede!ne the meaning of 
most operators for their own types; the expression  
a + b**2 can thus call user-de!ned routines 
for addition and exponentiation on a and b. The 
language maps most syntax operators to special-
ly named methods; for example, to implement 
exponentiation for a type, you write a method, 
__pow__, which is then called whenever the ** 
operator is encountered. That Python is object 
oriented at its core helps users build complex codes 
that closely track the physical or mathematical  
entities they model; however, Python doesn’t 
force this programming paradigm on users who 
prefer more familiar procedural approaches.

Python combines high-level "exibility, read-
ability, and a well-de!ned interface with low-
level capabilities, including an of!cial C interface 
that lets you extend the language with C code 
and link to third-party libraries in C, C++, and 
Fortran. This generality is advantageous for 
modern scienti!c computing: it’s a productive 
everyday environment that also lets you optimize  
performance-critical bottlenecks. Further, it pro-
vides the "exibility to build tools with a precise 
balance of low- and high-level features so you can 
appropriately choose between performance and 
ease of development or use.

This combination of semantic richness and 
"exibility makes Python well suited to solving 
many of the non-algorithmic computational is-
sues we mentioned above, such as integrating with 
the Web, data formats, or low-level hardware.  
Python libraries—whether included in the lan-
guage or from external projects—let you interface 
with Web servers, databases, and scienti!c storage 
formats such as HDF5 to process text and send data 

Figure 1. Implementing the basic QuickSort algorithm in Python. QuickSort is one of the simplest sorting 
algorithms to achieve O (n log n) complexity with a divide-and-conquer approach. Although tedious to 
implement in C or Fortran; in Python, these six lines suf!ce.

def qsort(L):
 if not L:  return L # exit recursion if input is empty
 pivot, rest  = L[0], L[1:]
 less_than  = [ x  for x in rest if x < pivot ]
 greater_eq = [ x for x in rest  if x >= pivot ]
 return qsort(less_than) + [pivot] + qsort(greater_eq)
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16 COMPUTING IN SCIENCE & ENGINEERING

over raw network sockets, and so on. Such tasks 
often require a mix of fairly low-level machinery 
and high-level abstractions, such as the combina-
tion of managing binary data over raw sockets 
with objects to represent Web servers or open  
database connections.

Numerics and Data
Given its rich native types and a "exible object 
model, Python lets users not only easily express 
many complex, high-level tasks concisely, but also 
offers a good platform for developing more spe-
cialized objects that are directly suited to scien-
ti!c work. The NumPy library2—which Stéfan 
van der Walt and his colleagues describe in “The 
NumPy Array: A Structure for Ef!cient Nu-
merical Computation” on page 22—provides a 
remarkably sophisticated multidimensional array 
object that can be accessed by low-level Fortran 
or C code for speed and provides a much richer 
Python-level interface.

Here, we begin to see the bene!t of layering 
scienti!c tools on top of Python’s general foun-
dations: today’s NumPy arrays have evolved from 
fairly closely mimicking n-dimensional Fortran 
arrays to being objects with rich semantics that 
include sophisticated broadcasting behavior and 
compound data types that make them suitable for 
database-like processing of complex datasets. As a 
simple example, we’ll do a brief analysis with real 
!nancial data freely available on the Internet.

As Figure 2 shows, working in the IPython 
interactive environment,3 we load the urllib 
module for manipulating URLs from Python’s 
standard library as well as the matplotlib4 package 
for data analysis and visualization. These compo-
nents let us download stock trading data for IBM 
from the Internet using the Yahoo! historical  
!nancial data service, which provides !les in  
comma-separated values (CSV) format typically 
read with spreadsheet software.

Next, we convert the CSV !le to a database-like 
NumPy array using matplotlib’s csv2rec() func-
tion and then answer a few simple questions about 
the IBM stock. The stock variable is a NumPy 
array, but rather than being a simple 2D array 
of numbers, NumPy arrays can support named 
!elds that correspond to the different CSV !le 
columns. The array contains !elds such as date, 
closing price, and trading volume, each with its 
own data type. The stock variable is thus func-
tionally equivalent to an array of C structs, but 
much easier to work with. We can then compute 
the daily trading volume in dollars as the prod-
uct of the volume (in number of shares) and the 
closing price (in dollars), and !nd both the peak 
trading volume and the day on which it occurred 
(see Figure 3).

We can now !nd which days were above 90 per-
cent of the maximum dollar volume. With these 
days, we can compute a Boolean mask to use as 
an indexing object to extract values from the daily 
volume array and the original stock price array’s 
date !eld (See Figure 4).

Finally, we produce the plot in Figure 5 using 
just a few lines of code (omitted here for concise-
ness) and the matplotlib4 library.

These simple operations show Python’s "exi-
bility and ease of exploration; using them, we can 
combine Python’s own general-purpose mod-
ules (such as urllib), with libraries written for 
and by scientists, such as NumPy and matplot-
lib. And, while this example focuses on numeri-
cal operations with NumPy arrays, arbitrary 
precision numerics and symbolic tools also exist.  
Finally, because Python is an open source lan-
guage, the extension path can be taken to an 
ultimate conclusion by going beyond Python 
itself.

Where NumPy has added powerful arrays that 
can contain all numerical types supported by modern 
compilers, the Sage system (www.sagemath.org)  

Figure 2. Loading the urllib module for manipulating URLs from Python’s standard library as well as the matplotlib 
package for data analysis and visualization. These components let us download stock trading data for IBM from the Internet 
using the Yahoo! historical !nancial data service, which provides !les in comma-separated values (CSV) format typically read 
with spreadsheet software.

In [1]: import urllib, matplotlib.mlab

In [2]: symbol = 'IBM'

In [3]: stock_url = ('http://ichart.finance.yahoo.com/table.csv?s=%s'+
...:  '&d=3&e=28&f=2010&g=d&a=0&b=2&c=1962&ignore=.csv') % symbol

In [4]: filename, headers = urllib.urlretrieve(stock_url)
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actually extends the core language. Sage modi-
!es the Python syntax to accept constructs 
that go beyond those valid in Python and rede-
!nes all of the language’s basic numerical types.  

The resulting integers are based on new C-level 
multiprecision integers whose division produces 
rational numbers, and all "oating-point opera-
tions are done using extended precision types 

Figure 3. Computing the daily trading volume in dollars as the product of the volume (in number of  
shares) and the closing price (in dollars) lets us !nd both the peak trading volume and the day on which  
it occurred.

In [5]: stock = matplotlib.mlab.csv2rec(filename)

In [6]: daily_vol = stock.volume*stock.close

In [7]: peak_vol = int(daily_vol.max()/1e6) # in Millions of dollars

In [8]: peak_date = stock.date[daily_vol.argmax()]

In [9]: print 'Peak volume $%s Million, on %s' % (peak_vol, peak_date)
Peak volume: $7771 Million, on 1997-01-22

Figure 4. Using a Boolean mask to !nd the days with the largest trading volumes and then printing the 
dates and volumes for those days.

In [10]: mask = daily_vol > 0.9+daily_vol.max()

In [11]: print 'Dates greater than 90% max volume', stock.date[mask]
Dates greater than 90% max volume [1999-04-22 1997-01-22]

In [12]: print 'Volume for these dates: $', daily_vol[mask]/1e6, 'Million'
Volume for these dates: $ [7618.5261  7771.1984] Million

Figure 5. A matplotlib-based display of IBM stock prices, starting in 1990. Dates in red are the upper  
10 percent of the trading volume, which we found using the example code.
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18 COMPUTING IN SCIENCE & ENGINEERING

instead of hardware "oating point. This lets Sage 
design a language whose numerical behavior fol-
lows a strict mathematical model, while being 
largely compatible with Python itself. Sage’s Web-
browser-based notebook interface also provides a 
good example of how to write custom interfaces to 
the Python interpreter.

This level of "exibility is hard to achieve in lan-
guages such as Fortran/C/C++ or environments 
such as Matlab or Mathematica. Fortran arrays 
are fast, but nowhere as "exible or semantically 
rich as NumPy’s, and doing symbolic computing 
in C++ is tedious at best. Building ef!cient low-
level machinery for proprietary systems is often a 
dif!cult task that requires custom build systems, 
producing a result that might not be portable or 
easy to maintain as vendor tool and interface ver-
sions change beyond the scientist’s control. Al-
though Python also has portability issues—such 
as between multiple versions of Python or multi-
ple versions of the Numpy application binary  
interface5—the fact that Python is free and open 
source helps ease such transitions. For example, 
researchers can run multiple versions of Python 
at the same time to support old production codes, 
which can be prohibitively expensive under a pro-
prietary licensing model. Researchers can also 
contribute to porting codes forward or backward, 
which is largely done on the Internet in an open, 
collaborative fashion. Although this might entail 
signi!cant work, the key point is that the users— 
who can always access the entire tool stack— 
retain control.

We’ve found clear bene!ts in having Python 
designed and maintained by an external com-
munity as a general-purpose language using 
the process of Python enhancement proposals 
(www.python.org/dev/peps/pep-0001). Not hav-
ing what appears to be a fundamental type like 
the array rigidly de!ned in the language has ac-
tually allowed the scienti!c community to evolve 
its own array library over the years, !ne-tuning 
it to become increasingly sophisticated. The sci-
enti!c community maintains a dialog with the 
language designers, and the core Python team 
has been highly receptive to scientists’ needs, 
letting the language develop speci!cally re-
quested features for NumPy and its predecessors 
while also balancing the competing demands of 
other Python user communities. This dialog 
and the vetting of a solid language design group 
ensures that the language remains balanced and 
consistent for all constituencies, even if it means 
that scientists occasionally don’t get a requested 
feature.

Languages, Environments,  
and Distributions
Until now, we’ve looked at Python mostly as a 
programming language. In practice, however, 
scientists use rich environments with lots of 
functionality, and integrating multiple tools is 
an attractive aspect of commercial technical 
computing systems.

Tools
As we now summarize, in the Python world, sci-
entists have collaboratively developed an open 
ecosystem of foundational tools that provide the 
key functionality needed for everyday computing 
work.

Interactive, exploratory work. IPython3 offers an 
end-user environment for interactive work, a 
component to embed in other systems to provide 
an interactive control interface, and an abstrac-
tion of these ideas over the network for interactive 
distributed and parallel computing. Custom-
ized versions of IPython are used in multiple 
systems—including Sage, which also provides a 
Web-based graphical notebook interface that lets 
users combine code, text, and graphics in a single 
environment.

Numerical arrays. All Python numerical codes 
today are based on the NumPy library, and the 
NumPy array is the basic data structure that vir-
tually all libraries understand as a common data 
interchange object. NumPy arrays have a rich 
Python interface, but they also can be readily 
accessed from C, C++, and Fortran, making it 
easy to optimize performance bottlenecks or re-
use existing libraries that have no knowledge of  
Python. 

Data visualization. matplotlib is the most widely 
used library for high-quality plotting, with 
support for a wide array of 2D and 3D plot 
types, precise layout control, a built-in LaTeX 
typesetting engine for label equations, and 
publication-quality output in all major image 
formats.4

The Chaco library is often used for build-
ing graphical interactive interfaces that tightly 
couple 2D data visualization to user controls. 
For high-end data visualization in three dimen-
sions, Mayavi6 provides both a rich GUI to the 
powerful Visualization ToolKit (VTK) libraries 
and an easy to use Python library. As Prabhu 
Ramachandran and Gaël Varoquaux describe in 
“Mayavi: 3D Visualization of Scienti!c Data” 
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on page 40, Mayavi wraps much of VTK’s com-
plexity in high-level objects that are easy to use 
for common tasks and directly support NumPy 
arrays. Finally, the VisIt (https://wci.llnl.gov/
codes/visit) and ParaView (www.paraview.org) 
projects provide comprehensive visualization 
systems with parallel rendering support and rich 
feature sets that users can control and extend in 
Python.

Algorithms. The SciPy package (www.scipy.org) 
provides a powerful collection of tools, both by 
wrapping existing libraries such as Lapack, FFT-
Pack (a Fortran subroutine library of fast Fourier 
transforms), and the Arnoldi Package (ARPack), 
and with new code written for SciPy itself. SciPy 
has support for dense and sparse linear algebra, 
signal processing, optimization, numerical inte-
gration and ordinary differential equations, spe-
cial functions, statistics, data !tting, and much 
more.

The Scikits (http://scikits.appspot.com/scikits)  
project offers add-on packages for SciPy, de-
veloped by teams focused on a speci!c applica-
tion domain; today there are Scikits for audio 
and image processing, time series analysis, sta-
tistical model description, environmental time 
series manipulation, machine learning, speech 
processing, and more. Also, many more projects 
are available on the Internet that provide special-
ized tools, including notable contributions from 
various US national laboratories such as Python 
bindings to the Portable, Extensible Toolkit 
for Scienti!c Computation (PETSc) and Tri-
linos solvers, and the Networkx7 graph theory 
package.

Performance. Fortran codes (such as those included 
in SciPy) have been traditionally accessed via f2py, 
a tool that generates Python wrappers for Fortran 
libraries included with NumPy. As Stefan Behnel  
and his colleagues describe in “Cython: The 
Best of Both Worlds,” on page 31, the Cython 
project (www.cython.org) can be described as an 
extension to the Python language with type an-
notations. Cython source code is processed by 
the Cython compiler; this produces pure C code 
that can then be compiled into a Python exten-
sion module (a .so, .dylib, or .dll dynamically 
linked library). Cython supports NumPy arrays 
and is an extremely powerful way to easily opti-
mize existing Python code, as well as to link to C 
and C++ libraries (Sage uses Cython extensively 
in both ways). Recently, Cython has also added 
Fortran support.

The Simpli!ed Wrapper Interface Generator 
(SWIG) system8 can automatically wrap large 
C and C++ libraries after you manually write an 
initial set of interface descriptions. The ctypes 
module (included with Python itself ) can call any 
dynamic library at runtime, making it possible to 
interface even with libraries that have no available 
source code; we know of many scientists who use 
this module to interface with hardware devices 
for which manufacturers only provide a Windows 
DLL and no source code.

Symbolic manipulation. Python doesn’t have a na-
tive notion of symbols like languages such as 
Mathematica, but the Sympy package (www.
sympy.org) offers basic symbolic objects and a  
growing collection of symbolic manipulation tools,  
from simple algebra to Gröbner bases.

Documentation. Properly documenting sci-
entific codes is a critical issue that is often 
(and unfortunately) given insuf!cient atten-
tion. In Python, the powerful Sphinx system 
(sphinx.pocoo.org) makes it easy to create well- 
formatted documentation in HTML and PDF 
formats, including mathematical markup with 
LaTeX support, !gures, and code examples that 
can be executed for validation as part of the 
build process.

The Python language itself is documented using 
Sphinx, and by now virtually all scienti!c projects 
have standardized on it as well; we therefore now 
have a set of uniform tools and extensions for pro-
ducing documentation that we all bene!t from. 
Although the responsibility of actually writing the 
documentation still falls on the code’s authors, an 
ef!cient and "exible toolchain makes the process 
much easier. Indeed, we’ve already seen that this 
leads to projects having more and better quality 
documents.

The SciPy community has developed a Web-
based system that allows anyone to easily contrib-
ute to NumPy and SciPy documentation. User 
contributions are peer-reviewed and improved 
until they meet the required quality standard for 
project incorporation. This system has greatly 
improved documentation quality and solved the 
common conundrum of having only the develop-
ers write documentation. It also offers a great way 
for newcomers to make contributions before they 
feel comfortable modifying the code. Because the 
Sphinx documentation system is written in Python  
itself, the scienti!c Python community has writ-
ten several extensions. For example, users can 
embed source code including IPython constructs, 
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NumPy, SciPy, and matplotlib directly into the 
document source; this ensures that example code, 
output, and !gure generation are run at docu-
mentation build time.

Distributions
One of the main attractions of systems like Mat-
lab and Mathematica is that—in addition to a pro-
gramming language and libraries—they provide 
a complete working environment, or distribution, 
in a single download. Earlier, we described indi-
vidual components for many tasks, but thanks to 
the hard work of numerous individuals, groups, 
and companies, there are now many distributions 
that provide this for the Python ecosystem, each 
with a different focus.

This is akin to how many Linux distributions 
work, where the various packagers (such as Red-
Hat, Debian, and Ubuntu) integrate the vast col-
lection of open source software into a coherent 
environment that users can install and update. 
Each of the collections described below includes 
a different set of tools, but all ship the basic ones 
we listed earlier:

• Enthought Python Distribution (EPD) is a large 
collection of packages available natively for OS 
X, various Unix systems, and Windows. The 
included software is all open source, but the 
bundled packaging, installer, and support are 
commercially licensed (similar to how Red-
Hat Enterprise Linux works, for example). The  
32-bit version is available for free download to 
academic users.

• PythonXY is a collection for Windows that em-
phasizes support for the Qt libraries for GUI 
development. PythonXY is distributed under 
the terms of the GNU General Public License 
version 3.

• PyIMSL Studio offers the basic set of tools along 
with the well-known IMSL (International 
Mathematics and Statistics Library) numerical 
libraries and their Python bindings, distrib-
uted under a commercial license from Visual 
Numerics.

• Sage is a complete environment that integrates 
most of the packages we discuss here (and many 
more) into a self-contained system for mathe-
matical computing based on Python but with its 
own language extensions. Because Sage’s GUI 
is via a Web browser, it doesn’t ship matplot-
lib or Mayavi GUI components, which require 
GUI toolkits such as WxWidgets and Qt. Sage 
is distributed under the terms of the GNU 
General Public License version 2.

Finally, on modern Linux distributions, most of 
the individual open source Python libraries we’ve 
mentioned (including IPython, NumPy, SciPy, 
matplotlib, the Enthought tool suite, Cython, 
Sympy, and Networkx) are available for installa-
tion via the built-in package management system. 
Some distributions also include older releases of 
Sage, but we prefer to use a more up-to-date Sage 
version downloaded directly from the project’s 
website.

Just a few years ago, getting a complete set of 
Python tools for scienti!c computing installed on 
a system was a daunting effort. Now, thanks to 
the efforts of these projects, the situation is dras-
tically different. We’ve successfully used EPD 
for teaching multiple scienti!c computing work-
shops, where students at the high school, college, 
and graduate level have self-installed the platform 
with “one-click” installers. This has made an enor-
mous difference in the ease with which newcom-
ers can get started with the language. Users have 
several options, depending on their speci!c needs. 
Some might want the convenience of an integrated, 
single-click installer like those in EPD, Sage, or 
PythonXY, while others might need customized 
installations. Sage fully supports building the en-
tire system from source from a single make!le, 
so that users can adapt the project to their local 
needs. In special environments with custom hard-
ware or limited storage, users can forgo integrated 
downloads and opt to use only those libraries that 
they need. This freedom can be invaluable and is 
something that can’t be done with large commer-
cial systems that are only provided by the vendors 
for a limited number of architectures.

Getting Started
After installing one of the prepackaged distribu-
tions we described earlier, you can take advantage 
of the vast amount of documentation—both free 
and for pay, online and in print—to speed your 
way to using Python and the core tools discussed 
here.

The official Python tutorial (http://docs. 
python.org/tutorial) provides a solid introduction 
to the language; for more depth, The Python Es-
sential Reference9 provides an excellent treatment 
of the language and standard library. The SciPy 
documentation portal (http://scipy.org/doc) pro-
vides links to reference and user documentation 
for Numpy and SciPy, and the additional docu-
mentation section (http://scipy.org/Additional_ 
Documentation) offers links to many helpful  
tutorials and overviews, such as a guide to transi-
tioning from Matlab to Python and Numpy.
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I n 2007, Travis Oliphant wrote an article 
in a previous CiSE special issue on Py-
thon detailing its strengths for scienti!c 
computing.2 At that point, many of the 

core pieces of the puzzle were only beginning 
to solidify, the documentation was scattered 
and incomplete, the Sage system was in its in-
fancy, and systems like Cython, Sympy, and the 
SciPy scikits infrastructure didn’t yet exist. To-
day, although much work remains, we can safely 
say that the community has found a core set of  
effective tools and is busy developing new direc-
tions based on this foundation.

Python still lags behind projects such as R 
in offering a full library of statistical and time-
series functionality, but rapid progress is being 
made on this front in pystatsmodels and other 
related projects. We now have in Python a rich 
environment based on a solid and well-designed 
language and with increasingly high-quality 
tools. This ecosystem, which emerged from a 
fruitful and open collaboration of academics 
and industry partners, lets scientists, engineers, 
and educators !nd precisely the parts they need. 
Having well-documented, open source compu-
tational tools will be increasingly important as 
computing becomes an integral component of all 
scienti!c research and engineering work; fortu-
nately, all the projects we have listed here con-
tinue to grow, and important new areas are being 
tackled.

Python has now entered a phase where it’s 
clearly a valid choice for high-level scienti!c code 
development, and its use is rapidly growing. This 
growth is occurring thanks to the dedicated work 
of many contributors throughout the past two 
decades; we hope that many more will follow in 
kind, !nding creative ways to solve many prob-
lems that remain. 
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