
COMPUTING IN SCIENCE & ENGINEERING THIS ARTICLE HAS BEEN PEER-REVIEWED. 13

S C I E N T I F I C
P Y T H O N

As the relationship between research and computing evolves, new tools are required to not
only treat numerical problems, but also to solve various problems that involve large datasets
in different formats, new algorithms, and computational systems such as databases and
Internet servers. Python can help develop these computational research tools by providing
a balance of clarity and !exibility without sacri"cing performance.

Python: An Ecosystem
for Scienti!c Computing

S cienti!c computing, a discipline at the
intersection of scienti!c research, engi-
neering, and computing, has tradition-
ally focused either on raw performance

(in languages such as Fortran and C/C++) or gen-
erality and ease of use (in systems such as Matlab
or Mathematica), and mainly for numerical prob-
lems. Today, scienti!c researchers use computers
for problems that extend far beyond pure numerics,
and we need tools "exible enough to address issues
beyond performance and usability.

As we describe here, the Python programming
language, augmented with a stack of open source
tools developed over the past decade by a diverse
group of scientists and engineers, provides a com-
putational ecosystem that is quite capable of tackling
these new challenges.

Scienti!c Computing’s
Changing Landscape
For a long time, scienti!c computing was focused
almost exclusively on raw performance for "oating-
point numerical tasks. It’s no accident that For-
tran is an abbreviation of formula translator: for
a long time, computing numerical formulas was a
computer’s main purpose. Today, however, scien-
ti!c computing’s algorithmic needs go far beyond
"oating-point numerics. Despite the lasting im-
portance and usefulness of array-oriented libraries
such as Lapack (and its many descendants), mod-
ern scienti!c codes routinely tackle problems that
go beyond number crunching with arrays.

Problems such as graph traversal, !nite state
machines, or branch and bound algorithms are
now a staple of many scienti!c codes.1 These re-
quire data structures beyond simple arrays and
use code full of logic and integer manipulations
that is quite different from what tools like Lapack
are good at. In addition, even today’s numerical
work has needs beyond hardware "oating point,
as many current problems of interest require in-
tegrated access to arbitrary precision integers,
rationals, and "oating-point numbers, often in
combination with symbolic manipulation.

The Python tool stack doesn’t attempt to re-
place the many critical codes and algorithms
with versions written in Python. Rather, the ap-
proach is to expose those codes through Python
wrappers while providing rich data structures and
programming paradigms to tackle problems not
easily managed with high-performance comput-
ing’s traditional data structures. Although Python
isn’t unique in possessing rich data structures
(C++ has them as well), it’s particularly good at

Fernando Pérez
University of California, Berkeley
Brian E. Granger
California Polytechnic State University, San Luis Obispo
John D. Hunter
TradeLink Securities

1521-9615/11/$26.00 © 2011 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

CISE-13-2-Perez.indd 13 09/02/11 4:40 PM

14 COMPUTING IN SCIENCE & ENGINEERING

interoperating with multiple languages’ struc-
tures and with a syntax accessible to scientists who
aren’t programmers.

Computing’s role in science and engineering
has also exploded beyond strictly algorithmic
needs. A range of factors has driven this trans-
formation including the Internet, ever-improving
hardware, online collaboration tools, the rise of
“data driven” science, and open source software
development models. As an integral part of their
research efforts, scientists today develop compu-
tational tools to tackle tasks as varied as

• accessing data and results over a network, often
with custom protocols;

• exposing codes and data via Web applications;
• interacting with databases;
• integrating components written in multiple

programming languages, and integrating tools
and libraries from multiple scienti!c disciplines;

• providing graphical user interfaces (GUIs) to
scienti!c codes;

• working with data in a wide range of formats,
including binary, XML, JavaScript Object No-
tation (JSON), and Hierarchical Data Format
(HDF5);

• controlling and interfacing with a range of
hardware devices;

• parallelizing programs to run on GPUs, clus-
ters, multicore CPUs, and supercomputers; and

• collaborating with large, geographically dis-
tributed teams of scientists, programmers, and
engineers on computationally based research,
software, and data.

Originally, computational resources (cycles,
memory, and storage) were scarce, and human
development time was comparatively cheap.
Over time, this balance inevitably shifted; ease
of use and development have become increas-
ingly important considerations, as evidenced by
the rise in popularity of high-level computing
environments.

First, the 1980s brought the rise of systems—
such as Matlab and IDL (the Interactive Data
Language)—that effectively encapsulated Fortran
libraries behind a friendly user interface with ac-
cess to rich functionality, interactive exploration,
and immediate data visualization. Later, systems
with symbolic capabilities and arbitrary preci-
sion numerical support, such as Mathematica and
Maple, became extremely popular. Such systems
made entirely new kinds of computations possible
that couldn’t be tackled with a reasonable pro-
gramming effort in plain Fortran or C.

All such systems provide interactive exploratory
environments that make language features and
libraries immediately available to scientists who
can use them to explore a problem domain. This
contrasts with the classical edit/compile/run cycle
of C or Fortran programming, which typically re-
quires separate computation and post-processing/
visualization steps.

An interactive environment offers much more
"exibility in using the computer as an exploration
tool; the code evolves as scientists better under-
stand a problem by performing small, incremental
computations that lead to a complete program.

The challenges of modern scienti!c computing
that we have discussed are hard to address purely
with languages such as Fortran and C/C++. In-
deed, they require computational expertise dif-
ferent from the scientist’s typical training in
writing fast for loops, and some problems aren’t
merely technical but have social aspects as well,
such as developing tools collaboratively over the
Internet.

Although the high-level environments we’ve
mentioned have proven extremely useful, the
carefully conceived Python programming lan-
guage combined with a "exible stack of compo-
nents provides a comprehensive ecosystem in
which even better solutions can be constructed.
Building free and open source codes for scienti!c
problems is also consistent with the research goals
of transparency and reproducibility.

Python: A General Purpose
Programming Language
Most tools that we’ve mentioned so far, from
Fortran to Mathematica, have one thing in
common: they were designed primarily with
mathematical and technical computing in
mind. Fortran has arrays and mathematical func-
tions de!ned as !rst-class entities in the language;
Matlab has native syntax to express common lin-
ear algebra operations; and Mathematica symbols
are all valid entities without declarations, so ex-
pressions can involve arbitrary symbol sets.

This design focus offers important bene!ts:
many everyday mathematical tasks can be per-
formed with a compact and familiar syntax; the
tool’s abstractions can map well to many sci-
enti!c domains; and there’s often considerable
out-of-the-box functionality for doing nontrivial
scienti!c computing. Writing sophisticated user
interface applications that integrate numerics
with visualization—while talking to databases
and handling custom user input—is possible but
dif!cult in some custom scienti!c languages (such

CISE-13-2-Perez.indd 14 09/02/11 4:40 PM

MARCH/APRIL 2011 15

as Matlab) and practically impossible in others
(such as R).

Background and Overview
In contrast, Python was designed as a general-
purpose language. Python’s creator, Guido van
Rossum, has written a detailed series of articles
on the language’s history (see http://python-
history.blogspot.com). Python was born in the early
1990s as a general-purpose “glue” language at the
CWI (the Centrum voor Wiskunde and Infor-
matica), the birthplace of ALGOL 68 (Algorithmic
Language 68). Prior to this, van Rossum had worked
on the ABC programming language, developed at
the CWI as a teaching language that emphasized
clarity. Although the ABC project was ultimately
shut down, van Rossum took many lessons from it
when he started to write Python as a tool for use in
multimedia and operating systems research proj-
ects. He wanted Python to be high-level enough
to be easy to read and write, while also—in sharp
contrast to Java and key to our purposes—offering
direct access to low-level capabilities, as well as
offering easy portability and a well-de!ned error
model based on exceptions.

Python is a dynamically typed language with a
rich set of native types. Its number hierarchy in-
cludes native arbitrary-length integers, hardware-
precision "oating-point and complex numbers,
and library support for rational numbers and ar-
bitrary precision "oating point. It also has pow-
erful strings, variable-size lists, sets, and very
"exible associative arrays called dictionaries in
Python. These types give Python a rich vocabu-
lary in which to express many complex algorith-
mic questions with clarity and ef!ciency. We can
illustrate this expressive power with a fully func-
tional implementation of the classic QuickSort.

QuickSort is one of the simplest sorting algo-
rithms to achieve O (n log n) complexity with a
divide-and-conquer approach. The basic algo-
rithm without optimizations is easy to explain, but
tedious to implement in C or Fortran. As Figure 1

shows, it can be implemented in Python in six
lines. It’s interesting to note how similar this code
example is to the pseudo-code that expresses the
algorithm on Wikipedia; such clarity and simplic-
ity of expression have caused some to refer to Py-
thon code as “executable pseudo-code.”

Furthermore, Python is an object-oriented
language that lets users rede!ne the meaning of
most operators for their own types; the expression
a + b**2 can thus call user-de!ned routines
for addition and exponentiation on a and b. The
language maps most syntax operators to special-
ly named methods; for example, to implement
exponentiation for a type, you write a method,
__pow__, which is then called whenever the **
operator is encountered. That Python is object
oriented at its core helps users build complex codes
that closely track the physical or mathematical
entities they model; however, Python doesn’t
force this programming paradigm on users who
prefer more familiar procedural approaches.

Python combines high-level "exibility, read-
ability, and a well-de!ned interface with low-
level capabilities, including an of!cial C interface
that lets you extend the language with C code
and link to third-party libraries in C, C++, and
Fortran. This generality is advantageous for
modern scienti!c computing: it’s a productive
everyday environment that also lets you optimize
performance-critical bottlenecks. Further, it pro-
vides the "exibility to build tools with a precise
balance of low- and high-level features so you can
appropriately choose between performance and
ease of development or use.

This combination of semantic richness and
"exibility makes Python well suited to solving
many of the non-algorithmic computational is-
sues we mentioned above, such as integrating with
the Web, data formats, or low-level hardware.
Python libraries—whether included in the lan-
guage or from external projects—let you interface
with Web servers, databases, and scienti!c storage
formats such as HDF5 to process text and send data

Figure 1. Implementing the basic QuickSort algorithm in Python. QuickSort is one of the simplest sorting
algorithms to achieve O (n log n) complexity with a divide-and-conquer approach. Although tedious to
implement in C or Fortran; in Python, these six lines suf!ce.

def qsort(L):
 if not L: return L # exit recursion if input is empty
 pivot, rest = L[0], L[1:]
 less_than = [x for x in rest if x < pivot]
 greater_eq = [x for x in rest if x >= pivot]
 return qsort(less_than) + [pivot] + qsort(greater_eq)

CISE-13-2-Perez.indd 15 09/02/11 4:40 PM

16 COMPUTING IN SCIENCE & ENGINEERING

over raw network sockets, and so on. Such tasks
often require a mix of fairly low-level machinery
and high-level abstractions, such as the combina-
tion of managing binary data over raw sockets
with objects to represent Web servers or open
database connections.

Numerics and Data
Given its rich native types and a "exible object
model, Python lets users not only easily express
many complex, high-level tasks concisely, but also
offers a good platform for developing more spe-
cialized objects that are directly suited to scien-
ti!c work. The NumPy library2—which Stéfan
van der Walt and his colleagues describe in “The
NumPy Array: A Structure for Ef!cient Nu-
merical Computation” on page 22—provides a
remarkably sophisticated multidimensional array
object that can be accessed by low-level Fortran
or C code for speed and provides a much richer
Python-level interface.

Here, we begin to see the bene!t of layering
scienti!c tools on top of Python’s general foun-
dations: today’s NumPy arrays have evolved from
fairly closely mimicking n-dimensional Fortran
arrays to being objects with rich semantics that
include sophisticated broadcasting behavior and
compound data types that make them suitable for
database-like processing of complex datasets. As a
simple example, we’ll do a brief analysis with real
!nancial data freely available on the Internet.

As Figure 2 shows, working in the IPython
interactive environment,3 we load the urllib
module for manipulating URLs from Python’s
standard library as well as the matplotlib4 package
for data analysis and visualization. These compo-
nents let us download stock trading data for IBM
from the Internet using the Yahoo! historical
!nancial data service, which provides !les in
comma-separated values (CSV) format typically
read with spreadsheet software.

Next, we convert the CSV !le to a database-like
NumPy array using matplotlib’s csv2rec() func-
tion and then answer a few simple questions about
the IBM stock. The stock variable is a NumPy
array, but rather than being a simple 2D array
of numbers, NumPy arrays can support named
!elds that correspond to the different CSV !le
columns. The array contains !elds such as date,
closing price, and trading volume, each with its
own data type. The stock variable is thus func-
tionally equivalent to an array of C structs, but
much easier to work with. We can then compute
the daily trading volume in dollars as the prod-
uct of the volume (in number of shares) and the
closing price (in dollars), and !nd both the peak
trading volume and the day on which it occurred
(see Figure 3).

We can now !nd which days were above 90 per-
cent of the maximum dollar volume. With these
days, we can compute a Boolean mask to use as
an indexing object to extract values from the daily
volume array and the original stock price array’s
date !eld (See Figure 4).

Finally, we produce the plot in Figure 5 using
just a few lines of code (omitted here for concise-
ness) and the matplotlib4 library.

These simple operations show Python’s "exi-
bility and ease of exploration; using them, we can
combine Python’s own general-purpose mod-
ules (such as urllib), with libraries written for
and by scientists, such as NumPy and matplot-
lib. And, while this example focuses on numeri-
cal operations with NumPy arrays, arbitrary
precision numerics and symbolic tools also exist.
Finally, because Python is an open source lan-
guage, the extension path can be taken to an
ultimate conclusion by going beyond Python
itself.

Where NumPy has added powerful arrays that
can contain all numerical types supported by modern
compilers, the Sage system (www.sagemath.org)

Figure 2. Loading the urllib module for manipulating URLs from Python’s standard library as well as the matplotlib
package for data analysis and visualization. These components let us download stock trading data for IBM from the Internet
using the Yahoo! historical !nancial data service, which provides !les in comma-separated values (CSV) format typically read
with spreadsheet software.

In [1]: import urllib, matplotlib.mlab

In [2]: symbol = 'IBM'

In [3]: stock_url = ('http://ichart.finance.yahoo.com/table.csv?s=%s'+
...: '&d=3&e=28&f=2010&g=d&a=0&b=2&c=1962&ignore=.csv') % symbol

In [4]: filename, headers = urllib.urlretrieve(stock_url)

CISE-13-2-Perez.indd 16 09/02/11 4:40 PM

MARCH/APRIL 2011 17

actually extends the core language. Sage modi-
!es the Python syntax to accept constructs
that go beyond those valid in Python and rede-
!nes all of the language’s basic numerical types.

The resulting integers are based on new C-level
multiprecision integers whose division produces
rational numbers, and all "oating-point opera-
tions are done using extended precision types

Figure 3. Computing the daily trading volume in dollars as the product of the volume (in number of
shares) and the closing price (in dollars) lets us !nd both the peak trading volume and the day on which
it occurred.

In [5]: stock = matplotlib.mlab.csv2rec(filename)

In [6]: daily_vol = stock.volume*stock.close

In [7]: peak_vol = int(daily_vol.max()/1e6) # in Millions of dollars

In [8]: peak_date = stock.date[daily_vol.argmax()]

In [9]: print 'Peak volume $%s Million, on %s' % (peak_vol, peak_date)
Peak volume: $7771 Million, on 1997-01-22

Figure 4. Using a Boolean mask to !nd the days with the largest trading volumes and then printing the
dates and volumes for those days.

In [10]: mask = daily_vol > 0.9+daily_vol.max()

In [11]: print 'Dates greater than 90% max volume', stock.date[mask]
Dates greater than 90% max volume [1999-04-22 1997-01-22]

In [12]: print 'Volume for these dates: $', daily_vol[mask]/1e6, 'Million'
Volume for these dates: $ [7618.5261 7771.1984] Million

Figure 5. A matplotlib-based display of IBM stock prices, starting in 1990. Dates in red are the upper
10 percent of the trading volume, which we found using the example code.

0

1991
1992

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

1

2

3

Vo
lu

m
e

(U
S$

 b
ill

io
n)

St
oc

k
pr

ic
e

(U
S$

)

4

5

6

7

0

20

40

60

80

100

120

140

CISE-13-2-Perez.indd 17 09/02/11 4:40 PM

18 COMPUTING IN SCIENCE & ENGINEERING

instead of hardware "oating point. This lets Sage
design a language whose numerical behavior fol-
lows a strict mathematical model, while being
largely compatible with Python itself. Sage’s Web-
browser-based notebook interface also provides a
good example of how to write custom interfaces to
the Python interpreter.

This level of "exibility is hard to achieve in lan-
guages such as Fortran/C/C++ or environments
such as Matlab or Mathematica. Fortran arrays
are fast, but nowhere as "exible or semantically
rich as NumPy’s, and doing symbolic computing
in C++ is tedious at best. Building ef!cient low-
level machinery for proprietary systems is often a
dif!cult task that requires custom build systems,
producing a result that might not be portable or
easy to maintain as vendor tool and interface ver-
sions change beyond the scientist’s control. Al-
though Python also has portability issues—such
as between multiple versions of Python or multi-
ple versions of the Numpy application binary
interface5—the fact that Python is free and open
source helps ease such transitions. For example,
researchers can run multiple versions of Python
at the same time to support old production codes,
which can be prohibitively expensive under a pro-
prietary licensing model. Researchers can also
contribute to porting codes forward or backward,
which is largely done on the Internet in an open,
collaborative fashion. Although this might entail
signi!cant work, the key point is that the users—
who can always access the entire tool stack—
retain control.

We’ve found clear bene!ts in having Python
designed and maintained by an external com-
munity as a general-purpose language using
the process of Python enhancement proposals
(www.python.org/dev/peps/pep-0001). Not hav-
ing what appears to be a fundamental type like
the array rigidly de!ned in the language has ac-
tually allowed the scienti!c community to evolve
its own array library over the years, !ne-tuning
it to become increasingly sophisticated. The sci-
enti!c community maintains a dialog with the
language designers, and the core Python team
has been highly receptive to scientists’ needs,
letting the language develop speci!cally re-
quested features for NumPy and its predecessors
while also balancing the competing demands of
other Python user communities. This dialog
and the vetting of a solid language design group
ensures that the language remains balanced and
consistent for all constituencies, even if it means
that scientists occasionally don’t get a requested
feature.

Languages, Environments,
and Distributions
Until now, we’ve looked at Python mostly as a
programming language. In practice, however,
scientists use rich environments with lots of
functionality, and integrating multiple tools is
an attractive aspect of commercial technical
computing systems.

Tools
As we now summarize, in the Python world, sci-
entists have collaboratively developed an open
ecosystem of foundational tools that provide the
key functionality needed for everyday computing
work.

Interactive, exploratory work. IPython3 offers an
end-user environment for interactive work, a
component to embed in other systems to provide
an interactive control interface, and an abstrac-
tion of these ideas over the network for interactive
distributed and parallel computing. Custom-
ized versions of IPython are used in multiple
systems—including Sage, which also provides a
Web-based graphical notebook interface that lets
users combine code, text, and graphics in a single
environment.

Numerical arrays. All Python numerical codes
today are based on the NumPy library, and the
NumPy array is the basic data structure that vir-
tually all libraries understand as a common data
interchange object. NumPy arrays have a rich
Python interface, but they also can be readily
accessed from C, C++, and Fortran, making it
easy to optimize performance bottlenecks or re-
use existing libraries that have no knowledge of
Python.

Data visualization. matplotlib is the most widely
used library for high-quality plotting, with
support for a wide array of 2D and 3D plot
types, precise layout control, a built-in LaTeX
typesetting engine for label equations, and
publication-quality output in all major image
formats.4

The Chaco library is often used for build-
ing graphical interactive interfaces that tightly
couple 2D data visualization to user controls.
For high-end data visualization in three dimen-
sions, Mayavi6 provides both a rich GUI to the
powerful Visualization ToolKit (VTK) libraries
and an easy to use Python library. As Prabhu
Ramachandran and Gaël Varoquaux describe in
“Mayavi: 3D Visualization of Scienti!c Data”

CISE-13-2-Perez.indd 18 09/02/11 4:40 PM

MARCH/APRIL 2011 19

on page 40, Mayavi wraps much of VTK’s com-
plexity in high-level objects that are easy to use
for common tasks and directly support NumPy
arrays. Finally, the VisIt (https://wci.llnl.gov/
codes/visit) and ParaView (www.paraview.org)
projects provide comprehensive visualization
systems with parallel rendering support and rich
feature sets that users can control and extend in
Python.

Algorithms. The SciPy package (www.scipy.org)
provides a powerful collection of tools, both by
wrapping existing libraries such as Lapack, FFT-
Pack (a Fortran subroutine library of fast Fourier
transforms), and the Arnoldi Package (ARPack),
and with new code written for SciPy itself. SciPy
has support for dense and sparse linear algebra,
signal processing, optimization, numerical inte-
gration and ordinary differential equations, spe-
cial functions, statistics, data !tting, and much
more.

The Scikits (http://scikits.appspot.com/scikits)
project offers add-on packages for SciPy, de-
veloped by teams focused on a speci!c applica-
tion domain; today there are Scikits for audio
and image processing, time series analysis, sta-
tistical model description, environmental time
series manipulation, machine learning, speech
processing, and more. Also, many more projects
are available on the Internet that provide special-
ized tools, including notable contributions from
various US national laboratories such as Python
bindings to the Portable, Extensible Toolkit
for Scienti!c Computation (PETSc) and Tri-
linos solvers, and the Networkx7 graph theory
package.

Performance. Fortran codes (such as those included
in SciPy) have been traditionally accessed via f2py,
a tool that generates Python wrappers for Fortran
libraries included with NumPy. As Stefan Behnel
and his colleagues describe in “Cython: The
Best of Both Worlds,” on page 31, the Cython
project (www.cython.org) can be described as an
extension to the Python language with type an-
notations. Cython source code is processed by
the Cython compiler; this produces pure C code
that can then be compiled into a Python exten-
sion module (a .so, .dylib, or .dll dynamically
linked library). Cython supports NumPy arrays
and is an extremely powerful way to easily opti-
mize existing Python code, as well as to link to C
and C++ libraries (Sage uses Cython extensively
in both ways). Recently, Cython has also added
Fortran support.

The Simpli!ed Wrapper Interface Generator
(SWIG) system8 can automatically wrap large
C and C++ libraries after you manually write an
initial set of interface descriptions. The ctypes
module (included with Python itself) can call any
dynamic library at runtime, making it possible to
interface even with libraries that have no available
source code; we know of many scientists who use
this module to interface with hardware devices
for which manufacturers only provide a Windows
DLL and no source code.

Symbolic manipulation. Python doesn’t have a na-
tive notion of symbols like languages such as
Mathematica, but the Sympy package (www.
sympy.org) offers basic symbolic objects and a
growing collection of symbolic manipulation tools,
from simple algebra to Gröbner bases.

Documentation. Properly documenting sci-
entific codes is a critical issue that is often
(and unfortunately) given insuf!cient atten-
tion. In Python, the powerful Sphinx system
(sphinx.pocoo.org) makes it easy to create well-
formatted documentation in HTML and PDF
formats, including mathematical markup with
LaTeX support, !gures, and code examples that
can be executed for validation as part of the
build process.

The Python language itself is documented using
Sphinx, and by now virtually all scienti!c projects
have standardized on it as well; we therefore now
have a set of uniform tools and extensions for pro-
ducing documentation that we all bene!t from.
Although the responsibility of actually writing the
documentation still falls on the code’s authors, an
ef!cient and "exible toolchain makes the process
much easier. Indeed, we’ve already seen that this
leads to projects having more and better quality
documents.

The SciPy community has developed a Web-
based system that allows anyone to easily contrib-
ute to NumPy and SciPy documentation. User
contributions are peer-reviewed and improved
until they meet the required quality standard for
project incorporation. This system has greatly
improved documentation quality and solved the
common conundrum of having only the develop-
ers write documentation. It also offers a great way
for newcomers to make contributions before they
feel comfortable modifying the code. Because the
Sphinx documentation system is written in Python
itself, the scienti!c Python community has writ-
ten several extensions. For example, users can
embed source code including IPython constructs,

CISE-13-2-Perez.indd 19 09/02/11 4:40 PM

20 COMPUTING IN SCIENCE & ENGINEERING

NumPy, SciPy, and matplotlib directly into the
document source; this ensures that example code,
output, and !gure generation are run at docu-
mentation build time.

Distributions
One of the main attractions of systems like Mat-
lab and Mathematica is that—in addition to a pro-
gramming language and libraries—they provide
a complete working environment, or distribution,
in a single download. Earlier, we described indi-
vidual components for many tasks, but thanks to
the hard work of numerous individuals, groups,
and companies, there are now many distributions
that provide this for the Python ecosystem, each
with a different focus.

This is akin to how many Linux distributions
work, where the various packagers (such as Red-
Hat, Debian, and Ubuntu) integrate the vast col-
lection of open source software into a coherent
environment that users can install and update.
Each of the collections described below includes
a different set of tools, but all ship the basic ones
we listed earlier:

• Enthought Python Distribution (EPD) is a large
collection of packages available natively for OS
X, various Unix systems, and Windows. The
included software is all open source, but the
bundled packaging, installer, and support are
commercially licensed (similar to how Red-
Hat Enterprise Linux works, for example). The
32-bit version is available for free download to
academic users.

• PythonXY is a collection for Windows that em-
phasizes support for the Qt libraries for GUI
development. PythonXY is distributed under
the terms of the GNU General Public License
version 3.

• PyIMSL Studio offers the basic set of tools along
with the well-known IMSL (International
Mathematics and Statistics Library) numerical
libraries and their Python bindings, distrib-
uted under a commercial license from Visual
Numerics.

• Sage is a complete environment that integrates
most of the packages we discuss here (and many
more) into a self-contained system for mathe-
matical computing based on Python but with its
own language extensions. Because Sage’s GUI
is via a Web browser, it doesn’t ship matplot-
lib or Mayavi GUI components, which require
GUI toolkits such as WxWidgets and Qt. Sage
is distributed under the terms of the GNU
General Public License version 2.

Finally, on modern Linux distributions, most of
the individual open source Python libraries we’ve
mentioned (including IPython, NumPy, SciPy,
matplotlib, the Enthought tool suite, Cython,
Sympy, and Networkx) are available for installa-
tion via the built-in package management system.
Some distributions also include older releases of
Sage, but we prefer to use a more up-to-date Sage
version downloaded directly from the project’s
website.

Just a few years ago, getting a complete set of
Python tools for scienti!c computing installed on
a system was a daunting effort. Now, thanks to
the efforts of these projects, the situation is dras-
tically different. We’ve successfully used EPD
for teaching multiple scienti!c computing work-
shops, where students at the high school, college,
and graduate level have self-installed the platform
with “one-click” installers. This has made an enor-
mous difference in the ease with which newcom-
ers can get started with the language. Users have
several options, depending on their speci!c needs.
Some might want the convenience of an integrated,
single-click installer like those in EPD, Sage, or
PythonXY, while others might need customized
installations. Sage fully supports building the en-
tire system from source from a single make!le,
so that users can adapt the project to their local
needs. In special environments with custom hard-
ware or limited storage, users can forgo integrated
downloads and opt to use only those libraries that
they need. This freedom can be invaluable and is
something that can’t be done with large commer-
cial systems that are only provided by the vendors
for a limited number of architectures.

Getting Started
After installing one of the prepackaged distribu-
tions we described earlier, you can take advantage
of the vast amount of documentation—both free
and for pay, online and in print—to speed your
way to using Python and the core tools discussed
here.

The official Python tutorial (http://docs.
python.org/tutorial) provides a solid introduction
to the language; for more depth, The Python Es-
sential Reference9 provides an excellent treatment
of the language and standard library. The SciPy
documentation portal (http://scipy.org/doc) pro-
vides links to reference and user documentation
for Numpy and SciPy, and the additional docu-
mentation section (http://scipy.org/Additional_
Documentation) offers links to many helpful
tutorials and overviews, such as a guide to transi-
tioning from Matlab to Python and Numpy.

CISE-13-2-Perez.indd 20 09/02/11 4:40 PM

MARCH/APRIL 2011 21

I n 2007, Travis Oliphant wrote an article
in a previous CiSE special issue on Py-
thon detailing its strengths for scienti!c
computing.2 At that point, many of the

core pieces of the puzzle were only beginning
to solidify, the documentation was scattered
and incomplete, the Sage system was in its in-
fancy, and systems like Cython, Sympy, and the
SciPy scikits infrastructure didn’t yet exist. To-
day, although much work remains, we can safely
say that the community has found a core set of
effective tools and is busy developing new direc-
tions based on this foundation.

Python still lags behind projects such as R
in offering a full library of statistical and time-
series functionality, but rapid progress is being
made on this front in pystatsmodels and other
related projects. We now have in Python a rich
environment based on a solid and well-designed
language and with increasingly high-quality
tools. This ecosystem, which emerged from a
fruitful and open collaboration of academics
and industry partners, lets scientists, engineers,
and educators !nd precisely the parts they need.
Having well-documented, open source compu-
tational tools will be increasingly important as
computing becomes an integral component of all
scienti!c research and engineering work; fortu-
nately, all the projects we have listed here con-
tinue to grow, and important new areas are being
tackled.

Python has now entered a phase where it’s
clearly a valid choice for high-level scienti!c code
development, and its use is rapidly growing. This
growth is occurring thanks to the dedicated work
of many contributors throughout the past two
decades; we hope that many more will follow in
kind, !nding creative ways to solve many prob-
lems that remain.

Acknowledgments
We thank Guido van Rossum for comments regard-
ing Python’s history, and Ariel Rokem, William Stein,
Michael Trumpis, and Stéfan van der Walt for valu-
able feedback on the entire article. We also thank
the anonymous reviewers for their careful reading
and detailed comments. The US National Institutes
of Health partially support Fernando Pérez’s work
under grant 5R01MH081909-02.

References
1. K. Asanovic et al., The Landscape of Parallel Comput-

ing Research: A View from Berkeley, tech. report UCB/
EECS-2006-183, Electrical Eng. and Computer Sci-
ence Dept., Univ. California, Berkeley, 2006.

2. T. Oliphant, “Python for Scienti!c Computing,”
Computing in Science & Eng., vol. 9, no. 3, 2007,
pp. 10–20.

3. F. Pérez and B.E. Granger, “IPython: A System for
Interactive Scienti!c Computing,” Computing in
Science & Eng., vol. 9, no. 3, 2007, pp. 21–29.

4. J.D. Hunter, “Matplotlib: A 2D Graphics Environ-
ment,” Computing in Science & Eng., vol. 9, no. 3,
2007, pp. 90–95.

5. T. Oliphant, Guide to NumPy, Tregol Publishing,
2006.

6. P. Ramachandran and G. Varoquaux, “Mayavi: Mak-
ing 3D Data Visualization Reusable,” Proc. 7th Python
in Science Conf., SciPy Community, 2008, pp. 51–56.

7. A.A. Hagberg, D.A. Schult, and P. J. Swart, “Explor-
ing Network Structure, Dynamics, and Function
Using NetworkX,” Proc. 7th Python in Science Conf.,
SciPy Community, 2008; http://conference.scipy.org/
proceedings/SciPy2008/paper_2.

8. D.M. Beazley, “Automated Scienti!c Software
Scripting with SWIG,” Future Generation Computing
Systems, vol. 19, no. 5, 2003, pp. 599–609.

9. D.M. Beazley, Python Essential Reference, 4th ed.,
Addison-Wesley, 2009.

Fernando Pérez is an associate researcher at the
University of California, Berkeley’s Helen Wills Neuro-
science Institute. His research interests include devel-
oping methods and tools for analyzing neuroimaging
data, using high-level languages for scienti"c com-
puting, and exploring new approaches to distributed
and parallel problems. He contributes to the scienti"c
Python ecosystem as a developer and educator; he is
the original author of the IPython interactive envi-
ronment and leads its development in collaboration
with Brian Granger. Pérez has a PhD in theoretical
physics from the University of Colorado at Boulder.
Contact him at Fernando.Perez@berkeley.edu.

Brian Granger is an assistant professor in the Phys-
ics Department at Cal Poly State University, San Luis
Obispo, California. His research interests include
computational quantum mechanics and parallel and
distributed computing in scienti"c computing. He
leads the IPython development in collaboration with
Fernando Pérez. Granger has a PhD in theoretical
physics from the University of Colorado. Contact him
at bgranger@calpoly.edu.

John Hunter is senior quantitative analyst at
TradeLink Securities. Hunter has a PhD in neurobiol-
ogy at the University of Chicago, and is the author
and lead developer of the matplotlib scienti"c visu-
alization package. Contact him at jdh2358@gmail.
com.

CISE-13-2-Perez.indd 21 09/02/11 4:40 PM

