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Abstract

We present a fast, adaptive multiresolution algorithm for applying integral operators with a wide class of radially symmetric
kernels in dimensions one, two and three. This algorithm is made efficient by the use of separated representations of the kernel.
We discuss operators of the class (−Δ + μ2I )−α , where μ � 0 and 0 < α < 3/2, and illustrate the algorithm for the Poisson
and Schrödinger equations in dimension three. The same algorithm may be used for all operators with radially symmetric kernels
approximated as a weighted sum of Gaussians, making it applicable across multiple fields by reusing a single implementation.
This fast algorithm provides controllable accuracy at a reasonable cost, comparable to that of the Fast Multipole Method (FMM).
It differs from the FMM by the type of approximation used to represent kernels and has the advantage of being easily extendable
to higher dimensions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For a number of years, the Fast Multipole Method (FMM) [1–3] has been the method of choice for applying
integral operators to functions in dimensions d � 3. On the other hand, multiresolution algorithms in wavelet and
multiwavelet bases introduced in [4] for the same purpose were not efficient enough to be practical in more than one
dimension. Recently, with the introduction of separated representations [5–7], practical multiresolution algorithms
in higher dimensions [8–11] became available as well. In this paper we present a new fast, adaptive algorithm for
applying a class of integral operators with radial kernels in dimensions d = 1,2,3, and we briefly discuss its extension
to higher dimensions.

In physics, chemistry and other applied fields, many important problems may be formulated using integral equa-
tions, typically involving Green’s functions as their kernels. Often such formulations are preferable to those via partial
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differential equations (PDEs). For example, evaluating the integral expressing the solution of the Poisson equation in
free space (the convolution of the Green’s function with the mass or charge density) avoids issues associated with the
high condition number of a PDE formulation. Integral operators appear in fields as diverse as electrostatics, quantum
chemistry, fluid dynamics and geodesy; in all such applications fast and accurate methods for evaluating operators on
functions are needed.

The FMM and our approach both employ approximate representations of operators to yield fast algorithms. The
main difference lies in the type of approximations that are used. For example, for the Poisson kernel 1/r in dimension
d = 3, the FMM [3] uses a plane wave approximation starting from the integral

1

r
= 1

2π

∞∫
0

e−λ(z−z0)

2π∫
0

eiλ((x−x0) cosα+(y−y0) sinα) dα dλ, (1)

where r = √
(x − x0)2 + (y − y0)2 + (z − z0)2. The elegant approximation derived from this integral in [3] is valid

within a solid angle, and thus requires splitting the application of an operator into directional regions; the number of
such regions grows exponentially with dimension. For the same kernel, our approach starts with the integral

1

r
= 2√

π

∞∫
−∞

e−r2e2s+s ds, (2)

and its discretization with finite accuracy ε yields a spherically symmetric approximation as a weighted sum of
Gaussians. Other radial kernels can be similarly treated by a suitable choice of integrals. The result is a separated
representation of kernels and, therefore, an immediate reduction in the cost of their application. This difference in the
choice of approximation dictates the differences in the corresponding algorithms. In dimension d � 3 both approaches
are practical and yield comparable performance. The key advantage of our approach is its straightforward extensibility
to higher dimensions [6,7].

Given an arbitrary accuracy ε, we effectively represent kernels by a set of exponents and weights describing the
terms of the Gaussian approximation of integrals like that in (2). The number of terms in such sum is roughly propor-
tional to log(ε−1), or a low power of log(ε−1), depending on the operator (see examples in [23]). Since operators are
fully described up to an accuracy ε by the exponents and weights of the sum of Gaussians, a single algorithm applies
all such operators. These include operators such as (−Δ + μ2I )−α , where μ � 0 and 0 < α < 3/2, and certain singu-
lar operators such as the projector on divergence-free functions. Since many physically significant operators depend
only on the distance between interacting objects, our approach is directly applicable to problems involving a wide
class of operators with radial kernels.

We combine separated and multiresolution representations of kernels and use multiwavelet bases [12] that provide
inter alia a method for discretizing integral equations, as is the case in quantum chemistry [8–11]. This choice of mul-
tiresolution bases accommodates integral and differential operators as well as a wide variety of boundary conditions,
without degrading the order of the method [13,14]. Multiwavelet bases retain the key desired properties of wavelet
bases, such as vanishing moments, orthogonality, and compact support. Due to the vanishing moments, wide classes
of integro–differential operators have an effectively sparse matrix representation, i.e., they differ from a sparse matrix
by an operator with small norm. Some of the basis functions of multiwavelet bases are discontinuous, similar to those
of the Haar basis and in contrast to wavelets with regularity (see, e.g., [15,16]). The usual choices of scaling functions
for multiwavelet bases are either the scaled Legendre or interpolating polynomials. Since these are also used in the
discontinuous Galerkin and discontinuous spectral elements methods, our approach may also be seen as an adaptive
extension of these methods.

The algorithm for applying an operator to a function starts with computing its adaptive representation in a multi-
wavelet basis, resulting in a 2d -tree with blocks of coefficients at the leaves. Then the algorithm adaptively applies
the (modified) separated non-standard form [4] of the operator to the function by using only the necessary blocks as
dictated by the function’s tree representation. We note that in higher dimensions, d � 3, functions need to be in a
separated representation as well, since the usual constructions via bases or grids are prohibitive (see [6,7]).

We start in Section 2 by recalling the basic notions of multiresolution analysis, non-standard operator form and
adaptive representation of functions underlying our development. We then consider the separated representation for
radially symmetric kernels in Section 3, and use it to efficiently extend the modified ns-form to multiple spatial
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dimensions in Section 4. We pay particular attention to computing the band structure of the operator based on one-
dimensional information. We use this construction in Section 5 to introduce the adaptive algorithm for application
of multidimensional operators in the modified ns-form, and illustrate its performance in Section 6. We consider two
examples: the Poisson equation in free space and the ground state of the Hydrogen atom. We conclude with a brief
discussion in Section 7.

2. Preliminary considerations

This section and Appendix A are provided for the convenience of the reader in order to keep this paper reasonably
self-contained. We provide background material and introduce necessary notation.

The essence of our approach is to decompose the operator using projectors on a multiresolution analysis (MRA),
and to efficiently apply its projections using a separated representation. We use the decomposition of the operator into
the ns-form [4], but we organize it differently (thus, modified ns-form) to achieve greater efficiency. This modification
becomes important as we extend this algorithm to higher dimensions.

In this section we introduce notation for MRA, describe the adaptive representation of functions and associated
data structures, introduce the modified ns-form and an algorithm for its adaptive application in dimension d = 1 as
background material for the multidimensional case.

2.1. Multiresolution analysis

Let us consider the multiresolution analysis as a decomposition of L2([0,1]d) into a chain of subspaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · ,
so that L2([0,1]d) = ⋃∞

j=0 Vj . We note that our indexing of subspaces (increasing towards finer scales) follows that
in [13], and is the reverse of that in [4,15]. On each subspace Vj , we use the tensor product basis of scaling functions

obtained using the functions φ
j
kl(x) (k = 0, . . . , p − 1) which we briefly describe in Appendix A.

The wavelet subspaces Wj are defined as the orthogonal complements of Vj in Vj−1, thus

Vn = V0

n⊕
j=0

Wj .

Introducing the orthogonal projector on Vj , Pj :L2([0,1]d) → Vj and considering an operator T :L2([0,1]d) →
L2([0,1]d), we define its projection Tj : Vj → Vj as Tj = Pj TPj . We also consider the orthogonal projector
Qj :L2([0,1]d) → Wj , defined as Qj = Pj+1 − Pj .

2.2. Adaptive representation of functions

Let us describe an adaptive refinement strategy for construction multiresolution representations of functions
f :B → B , where B = [0,1]d . We proceed by recursive binary subdivision of the box B , so the basic structure rep-
resenting our functions is a 2d -tree with arrays of coefficients stored at the leaves (terminal nodes) and no data stored
on internal nodes. On each box obtained via this subdivision, our basis is a tensor product of orthogonal polynomials
of degree k = 0, . . . , p − 1 in each variable, as described in Appendix A. Therefore, the leaves carry d-dimensional
arrays of pd coefficients which may be used to approximate function values anywhere in the box corresponding to the
spatial region covered by it, via (A.4) or its equivalent for higher values of d . For conciseness, we will often refer to
these d-dimensional arrays of coefficients stored at tree nodes as function blocks.

This adaptive function decomposition algorithm is similar to that used in [17]. Such construction formally works in
any dimension d . However, since its complexity scales exponentially with d , its practical use is restricted to fairly low
dimension, e.g. d � 4. In higher dimensions, alternate representation strategies for functions such as [6,7] should be
considered. In high dimensions, these strategies deal with the exponential growth of complexity by using controlled
approximations that have linear cost in d .

For simplicity, we will describe the procedure for the one-dimensional case since the extension to dimensions d =
2,3 is straightforward. Since we cannot afford to construct our representation by starting from a fine scale (especially
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in d = 3), we proceed by successive refinements of an initial coarse sampling. This approach may result in a situation
where the initial sampling is insufficient to resolve a rapid change in a small volume; however, in practical applications
such situations are rare and may be avoided by an appropriate choice of the initial sampling scale.

Let B
j
l = [2−j l,2−j (l + 1)], l = 0, . . . ,2j − 1, represent a binary subinterval on scale j . We denote by f

j
l =

{f j
l (xk)}p−1

k=0 the vector of values of the function f on the Gaussian nodes in B
j
l . From these values we compute the

coefficients {sj
kl}p−1

k=0 (see (A.6) in Appendix A) and interpolate f (x) for any x ∈ B
j
l by using (A.4). We then subdivide

B
j
l into two child intervals, B

j+1
2l and B

j+1
2l+1, and evaluate the function f on the Gaussian nodes in B

j+1
2l and B

j+1
2l+1.

We then interpolate f by using the coefficients {sj
kl}p−1

k=0 from their parent interval and denote by f̃
j+1
2l and f̃

j+1
2l+1 the

vectors of interpolated values on the two subintervals. Now, if for a given tolerance ε either ‖f j+1
2l − f̃

j+1
2l ‖ > ε or

‖f j+1
2l+1 − f̃

j+1
2l+1‖ > ε, we repeat the process recursively for both subintervals, B

j+1
2l and B

j+1
2l+1; otherwise, we keep the

coefficients {sj
kl}p−1

k=0 to represent the function on the entire interval B
j
l . This interval then becomes a leaf in our tree.

At this stage we use the �∞ norm, thus constructing an approximation f̃ to the original function f such that
‖f − f̃ ‖∞ < ε, which immediately implies that ‖f − f̃ ‖2 < ε. This estimate clearly extends to any dimension. Once
the approximation with �∞ norm is constructed, the corresponding tree may be pruned if an application only requires
the approximation to be valid in the �2 norm. We start this process on the finest scale and simply remove all blocks
whose cumulative contribution is below ε. Other norms, such as H1, can be accommodated by appropriately weighing
the error tolerance with a scale-dependent factor in the initial (coarse to fine) decomposition process.

The complete decomposition algorithm proceeds by following the above recipe, starting with an initial coarse scale
(typically j = 0) and continuing recursively until the stopping criterion is met for all subintervals. In practice, we
choose a stopping scale jmax, beyond which the algorithm will not attempt to subdivide any further. Reaching jmax
means that the function has significant variations which are not accurately resolved over an interval of width 2−jmax

using a basis of order p. A pseudo-code listing of this process is presented as Algorithm 1.

Algorithm 1. Adaptive function decomposition.

Start at a coarse scale, typically j = 0.
Recursively, for all boxes bj on scale j , proceed as follows:
Construct the list C of 2d child boxes bj+1 on scale j + 1.
Compute the values of the function f (bj ) at the pd Gauss–Legendre quadrature nodes in bj .
for all boxes bj+1 ∈ C do

From f (bj ), interpolate to the Gauss–Legendre quadrature nodes in bj+1, producing values f̃ (bj+1).
Compute the values of f (bj+1) at the Gauss–Legendre nodes of bj+1, by direct evaluation.
if ‖f (bj+1) − f̃ (bj+1)‖∞ > ε then

Recursively repeat the entire process for all boxes bj+1 ∈ C.
end if

end for
Getting here means that the interpolation from the parent was successful for all child boxes. We store the parent’s
coefficients from bj in the function tree.

2.2.1. Tree structures for representing functions
The decomposition Algorithm 1 naturally leads to a tree data structure to represent functions, with the leaves

of the tree corresponding to the spatial intervals over which the multiwavelet basis provides a sufficiently accurate
local approximation. By using (A.4) or its higher-dimensional extensions, the only data needed to approximate f (x)

anywhere in B is the array of basis coefficients on these leaves. Thus we use a tree structure where the leaves store
these coefficients and the internal nodes do not contain any data (and are effectively removed since we use hash tables
for storage). We will refer to this structure as an adaptive tree. Each level in the tree corresponds to a scale in the
MRA, with the root node corresponding to the coarsest projection f0 ∈ V0.

Now, in order to apply the modified non-standard form of an operator to a function, we will show in the next section
that we also need the basis coefficients corresponding to internal nodes of the tree. Hence, from the adaptive tree data
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(a) Function (b) Pointwise error

(c) Adaptive tree (d) Redundant tree

Fig. 1. The function f (x) = sin(16πx6) shown in (a), is decomposed with p = 8 and ε = 10−4; (b) shows the pointwise approximation error. (c) is
the resulting adaptive tree, where smaller subdivisions are required in regions with higher frequency content. (d) is the redundant tree associated
with this adaptive decomposition, where all internal nodes have been filled with data.

structure we will compute a similar tree but where we do keep the coefficients of scaling functions on all nodes (leaves
and internal).

The coefficients on the internal nodes are redundant since they are computed from the function blocks stored in
the leaves. We will thus refer to the tree containing coefficients on all nodes as a redundant tree. It is constructed
recursively starting from the leaves, by projecting the scaling coefficients from all sibling nodes onto their parent
node, using the decomposition (A.15).

Figure 1 shows both the adaptive and the redundant trees for a sample function. This figure displays the coarsest
scales at the bottom and progressively finer ones further up, with filled boxes representing nodes where scaling coef-
ficients are stored and empty boxes indicating nodes with no data in them (these do not need to be actually stored in
the implementation).

2.3. Modified ns-form

The non-standard form [4] (see also [13] for the version specialized for multiwavelets) of the operator T is the
collection of components of the telescopic expansion

Tn = (Tn − Tn−1) + (Tn−1 − Tn−2) + · · · + T0 = T0 +
n−1∑
j=0

(Aj + Bj + Cj ), (3)

where Aj = Qj TQj , Bj = Qj TPj , and Cj = Pj TQj . The main property of this expansion is that the rate of decay of
the matrix elements of the operators Aj , Bj and Cj away from the diagonal is controlled by the number of vanishing
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moments of the basis and, for a finite but arbitrary accuracy ε, the matrix elements outside a certain band can be
set to zero resulting in an error of the norm less than ε. Such behavior of the matrix elements becomes clear if we
observe that the derivatives of kernels of Calderón–Zygmund and pseudo-differential operators decay faster than the
kernel itself. If we use the Taylor expansion of the kernel to estimate the matrix elements away from the diagonal, then
the size of these elements is controlled by a high derivative of the kernel since the vanishing moments eliminate the
lower order terms [4]. We note that for periodic kernels the band is measured as a periodic distance from the diagonal,
resulting in filled-in ‘corners’ of a matrix representation.

Let us introduce notation to show how the telescopic expansion (3) is used when applying an operator to a function.
If we apply the projection of the operator Tj−1 not on its “natural scale” j − 1, but on the finer scale j , we denote
its upsampled version as ↑(Tj−1). In the matrix representation of Tj−1, this operation results in the doubling of the
matrix size in each direction. This upsampling ↑(·) and downsampling ↓(·) notation will also be used for projections
of functions.

With this notation, computing g = Tf via (3) splits across scales,

ĝ0 = T0f0,

ĝ1 = [
T1 − ↑(T0)

]
f1,

ĝ2 = [
T2 − ↑(T1)

]
f2,

...

ĝj = [
Tj − ↑(Tj−1)

]
fj ,

...

(4)

where fj = Pj f .
As in the application of the usual ns-form in [4], to obtain gn after building the set {ĝ0, ĝ1, . . . , ĝn}, we have to

compute

gn = ĝn + ↑(
ĝn−1 + ↑(

ĝn−2 + ↑(
ĝn−3 + · · · + (↑ĝ0) · · ·))). (5)

The order of the parentheses in this expression is essential, as it indicates the order of the actual operations which
are performed starting on the coarsest subspace V0. For example, if the number of scales n = 4, then (5) yields
g4 = ĝ4 + ↑(ĝ3 + ↑(ĝ2 + ↑(ĝ1 + (↑ĝ0)))), describing the sequence of necessary operations.

Unfortunately, the sparsity of the non-standard form induced by the vanishing moments of bases is not sufficient for
fast practical algorithms in dimensions other than d = 1. For algorithms in higher dimensions, we need an additional
structure for the remaining non-zero coefficients of the representation. We will use separated representations (see
Section 3) introduced in [6,7] and first applied in a multiresolution setting in [8–11]. Within the retained bands,
the components of the non-standard form are stored and applied in a separated representation and, as a result, the
numerical application of operators becomes efficient in higher dimensions.

2.4. Modified ns-form in 1D

Let us describe a one-dimensional construction for operators on L2([0,1]) to introduce all the features necessary
for a multidimensional algorithm. Since we use banded versions of operators, we need to introduce the necessary
bookkeeping.

The “template” for the band structure on scale j comes from the band on the previous scale j − 1. For each block
on scale j − 1, the upsampling operation ↑(Tj−1) creates four blocks (all combinations of even/odd row and column
indices). We insist on maintaining the strict correspondence between these four blocks and those of Tj . For this
reason the description of the retained blocks of Tj involves the parity of their row and column indices. Let us denote
the blocks in the matrix representing Tj by tj ;ll′ , where l, l′ = 0, . . . ,2j−1. Individual elements within these blocks

are indexed as t
j ;ll′
ii′ , where i, i′ = 0, . . . , p − 1, and p is the order of the multiwavelet basis. For a given width of the

band bj , we keep the operator blocks tj ;ll′ with indices satisfying

l − bj + 1 � l′ � l + bj , for even l,

l − b � l′ � l + b − 1, for odd l.
(6)
j j
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We denote the banded operators where we keep only blocks satisfying (6) as T
bj

j and ↑(Tj−1)
bj . If we downsample

the operator ↑(Tj−1)
bj back to its original scale j − 1, then (6) leads to the band described by the condition

l − 
bj /2� � l′ � l + 
bj/2�, (7)

where 
bj /2� denotes the integer part of bj /2. We denote the banded operator on scale j − 1 as T

bj /2�
j−1 , where we

retain blocks satisfying (7).
If we now rewrite (4) keeping only blocks within the bands on each scale, we obtain

ĝ0 = T0f0,

ĝ1 = [
Tb1

1 − ↑(T0)
b1

]
f1 = Tb1

1 f1 − ↑(T0)
b1f1,

ĝ2 = [
Tb2

2 − ↑(T1)
b2

]
f2 = Tb2

2 f2 − ↑(T1)
b2f2,

...

ĝj = [
T

bj

j − ↑(Tj−1)
bj

]
fj = T

bj

j fj − ↑(Tj−1)
bj fj ,

...

(8)

For any arbitrary but finite accuracy, instead of applying the full [Tj − ↑(Tj−1)], we will only apply its banded
approximation.

A simple but important observation is that

↓([↑(Tj−1)
]
fj

) = Tj−1fj−1, (9)

which follows from the fact that Qj Pj = Pj Qj = 0, since these are orthogonal projections. Thus, we observe that

↓(↑(Tj−1)
bj ) = T


bj /2�
j−1 ; so instead of applying ↑(Tj−1)

bj fj on scale j , we can obtain the same result using (9), so

that ↑(T

bj /2�
j−1 fj−1) = ↑(Tj−1)

bj fj . Therefore, we will compute only T

bj /2�
j−1 fj−1 on scale j −1 and combine it with

computing T
bj−1
j−1 fj−1. Incorporating this into (5), we arrive at

gn = Tbn
n fn + ↑[(

Tbn−1
n−1 − T
bn/2�

n−1

)
fn−1 + ↑[(

Tbn−2
n−2 − T
bn−1/2�

n−2

)
fn−2 + · · · + [↑[(

T0 − T
b1/2�
0

)
f0

]]
. . .

]]
.

(10)

Using this expression yields an efficient algorithm for applying an operator, as on each scale j , T
bj

j − T
[bj+1/2]
j is

a sparse object, due to the cancellation which occurs for most of the blocks. In particular, T
bj

j − T
[bj+1/2]
j is missing

the blocks near the diagonal, and we will refer to it as an outer band matrix. We will call T
bj

j a whole band matrix as
it contains both the inner and outer bands.

The structure of these matrices is illustrated in Fig. 2. The two empty scales j = 0,1 arise due to the complete
cancellation of blocks on these scales. We note that the modified non-standard form is constructed adaptively in the
number of scales necessary for a given function. For just two scales, this construction will have the scale j = 1 non-
empty. Given an adaptive decomposition of a function on n scales, we precompute the modified non-standard form
(depicted in Fig. 2 for five scales) on all scales n,n − 1, . . . ,1. For matrices requiring 2n · 2n blocks on the finest
scale n, we need to keep and apply only O(2n) blocks, as with the original non-standard form in [4].

2.4.1. Adaptive application
Let us show how to use the multiscale representation in (10) to apply the operator T to a function f with controlled

accuracy ε. We describe an adaptive application of the operator to a function, where we assume (as is often the case)
that the tree structure of the input is sufficient to adequately describe the output with accuracy ε. This assumption will
be removed later.

Our algorithm uses the structure shown in Fig. 2 in an adaptive fashion. We copy the structure of the redundant
tree for the input function, and use that as a template to be filled for the output g. For each node of the output tree we
determine whether it is a leaf or an internal node: for leaves, we must apply a whole band matrix on the scale of that
node, such as the leftmost matrix for j = 5 in the example shown in Fig. 2. For internal nodes, we apply an outer band
matrix (for that scale). We note that our construction of the operator produces both whole and outer band matrices
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Fig. 2. Modified non-standard form of the convolution operator in (11) in a multiwavelet basis, with white representing 0 and black representing
large values. The top matrix is the projection of this operator on V5, resulting in a dense matrix. The lower half depicts the multiresolution
representation in (10) with only the blocks that are actually retained for a given accuracy. We will call the leftmost matrix in this series a whole
band matrix and all others outer band matrices. The two empty outer band matrices on scales j = 0,1 are explained in the main text.

for all scales, and we simply choose the appropriate kind for each node of output as needed. Upon completion of this
process, we apply the projection (5) to construct the final adaptive tree representing the output.

Algorithm 2 returns an adaptive tree representing the function g. This tree contains sufficient information to eval-
uate g at arbitrary points by interpolation and may be used as an input in further computations.

We note that Step 2 in Algorithm 2 naturally resolves the problem that is usually addressed by mortar methods,
see, e.g., [18–21]. Since adaptive representations have neighboring blocks of different sizes, they encounter difficulties
when applying non-diagonal operators, as they require blocks which do not exist on that scale. Our approach simply
constructs these as needed and caches them for reuse, without requiring any additional consideration on the part of
the user.

Algorithm 2. Adaptive non-standard form operator application in d = 1, g = Tf .

Initialization: Construct the redundant tree for f and copy it as skeleton tree for g (see Section 2.2.1).
for all scales j = 0, . . . , n − 1 do

for all function blocks g
j
l in the tree for g at scale j do

Step 1. Determine the list of all contributing blocks of the modified ns-form Tj

ll′ (see Section 2.3):

if g
j
l belongs to a leaf then

Read operator blocks Tj

ll′ from row l of whole band matrix T
bj

j .
else

Read operator blocks Tj

ll′ from row l of outer band matrix T
bj

j − T
[bj+1/2]
j .

end if
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Step 2. Find the required blocks f
j

l′ of the input function f :

if function block f
j

l′ exists in the redundant tree for f then
Retrieve it.

else
Create it by interpolating from a coarser scale and cache for reuse.

end if
Step 3. Output function block computation:
Compute the resulting output function block according to ĝ

j
l = ∑

l′ Tj

ll′f
j

l′ , where the operation Tj

ll′f
j

l′
indicates a regular matrix–vector multiplication.

end for
end for
Step 4. Adaptive projection:
Project resulting output function blocks ĝ

j
l on all scales into a proper adaptive tree by using Eq. (5).

Discard from the resulting tree unnecessary function blocks at the requested accuracy.
Return: the function g represented by its adaptive tree.

2.4.2. Numerical example
Let us briefly illustrate the application of the modified ns-form with an example of a singular convolution on the

unit circle, the operator with the kernel K(x) = cot(πx),

(Cf )(y) = p.v.

1∫
0

cot
(
π(y − x)

)
f (x)dx, (11)

a periodic analogue of the Hilbert transform. In order to find its representation in multiwavelet bases, we compute

r
j ;l
ii′ = 2−j

1∫
−1

K
(
2−j (x + l)

)
Φii′(x)dx = 2−j

1∫
−1

cot
(
π2−j (x + l)

)
Φii′(x)dx, (12)

where Φii′(x), i, i′ = 0, . . . , k − 1 are cross-correlation functions described in Appendix A.4 and l = 0,±1,±2,

. . . ,2j − 1. We compute r
j ;l
ii′ using the convergent integrals

r
j ;l
ii′ = 2−j

i′+i∑
k=i′−i

ck
ii′

1∫
0

Φ+
k,0(x)

(
cot

(
π2−j (x + l)

) + (−1)i+i′ cot
(
π2−j (−x + l)

))
dx,

where Φ+
k,0 is a polynomial described in Appendix A.4. In our numerical experiment, we apply (11) to the periodic

function on [0,1],
f (x) =

∑
k∈Z

e−a(x+k−1/2)2
,

which yields

(Cf )(y) = −
∑
k∈Z

e−a(y+k−1/2)2
Erfi

[√
a(y + k − 1/2)

] = i

√
π

a

∑
n∈Z

sign(n)e−n2π2/ae2πiny, (13)

where e−y2
Erfi(y) = 2√

π

∫ y

0 es2−y2
ds. Expression (13) is obtained by first observing that the Hilbert transform of

e−ax2
is −e−ay2

Erfi(
√

ay), and then evaluating the lattice sum, noting that (see [22, formula 4.3.91])

cot(πx) = 1

π

(
1

x
+

∞∑ 2x

x2 − k2

)
.

k=1
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Table 1
Results from evaluating (13) with our algorithm

p Scales Nblocks ε E2

5 [2,3,4] 8 10−3 1.5 × 10−4

8 [2,4,5] 12 10−6 1.3 × 10−7

11 [2,4,5] 14 10−9 1.1 × 10−10

14 [3,4,5] 16 10−12 4.4 × 10−13

Notes. The order of the basis p is adjusted as a function of the requested precision ε. The second column indicates scales present in the adaptive
tree for the input. The third column shows the total number of blocks of coefficients in this tree. The last column (E2) shows the actual error of the
computed solution in the �2 norm.

Fig. 3. Results of applying the cotangent kernel to a periodized Gaussian using basis of order p = 14 (the last row in Table 1). The pointwise error
is shown on the right for a requested accuracy of ε = 10−12.

Table 1 summarizes the numerical construction of this solution for a = 300, at various requested precisions. Opti-
mal performance is obtained by adjusting the order of the basis p as a function of the requested precision, to ensure
that the operator remains a banded matrix with small band, and that the adaptive representation of the input function
requires a moderate number of scales. The resulting numerical error (as compared to the exact analytical solution),
measured in the �2 norm, is shown in the last column. Figure 3 shows the input and results for this example, as well
as the point-wise error for the case where εreq = 10−12 and p = 14 (the last row in the table).

3. Separated representations of integral kernels

The approach we have discussed so far does not efficiently generalize to the application of non-separable mul-
tidimensional integral kernels. Since several physically important kernels belong to this category (e.g., the Poisson
kernels in d = 2 and d = 3), additional tools are needed. We now describe the key idea that allows us to perform this
generalization to d > 1.

We use the separated representation of operators introduced in [6,23] to reduce the computational cost of the
straightforward generalization of the multiresolution approach in [4]. Such representations are particularly simple for
convolution operators and are based on approximating kernels by a sum of Gaussians [8–11,23]. This approximation
has a multiresolution character by itself and requires a remarkably small number of terms. In fact, our algorithm
uses the coefficients and the exponents of the Gaussian terms as the only input from which it selects the necessary
terms, scale by scale, according the desired accuracy threshold ε. Therefore, our algorithm works for all operators
with kernels that admit approximation by a sum of Gaussians. Examples of such operators include the Poisson and the
bound state Helmholtz Green’s functions, the projector on divergence free functions, as well as regular and fractional
derivative operators. Let us consider a particular family of operators (−Δ + μ2I )−α , where μ � 0 and 0 < α < 3/2.
The kernel of this operator

Kμ,α(r) = 2− 3
2 +α · Cα ·

(
μ

) 3
2 −α

K 3
2 −α

(μr),

r
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Fig. 4. Relative error of the Gaussian approximation for the Poisson kernel in 3 dimensions. This unoptimized expansion uses 299 terms to cover a
dynamic range of roughly 15 decades with ε = 10−10 relative accuracy.

where K 3
2 −α

is the modified Bessel function, r = ‖x−y‖ and Cα = 2 ·2−2απ− 3
2 /
(α), has an integral representation

Kμ,α(r) = Cα

∞∫
−∞

e−r2e2s

e− 1
4 μ2e−2s+(3−2α)s ds. (14)

Using the trapezoidal rule, we construct an approximation valid over a range of values δ � r � R with accuracy ε, of
the form∣∣∣∣∣Kμ,α(r) −

M∑
m=1

wme−τmr2

∣∣∣∣∣ � εK0,α(r) = ε

(3/2 − α) · Cα

2r3−2α
, (15)

where τm = e2sm , wm = hCαe−μ2e−2sm/4+(3−2α)sm , h = (B − A)/M and sm = A + mh. The limits of integration, A,
B and the step size h are selected as indicated in [23], where it is shown that for a fixed accuracy ε the number of
terms M in (15) is proportional to log(Rδ−1). Although it is possible to select δ and R following the estimates in [24]
and optimize the number of terms for a desired accuracy ε, in this paper we start with an approximation that has an
obviously excessive range of validity and thus, an excessive number of terms.

An example of such approximation is shown in Fig. 4. For a requested tolerance of ε = 10−10, roughly 300 terms
are enough to provide a valid approximation over a range of 15 decades. We then let the algorithm choose the necessary
terms, scale by scale, to satisfy the user-supplied accuracy requirement ε. This approach may end up with a few extra
terms on some scales in comparison with that using a nearly optimal number of terms [8–11]. Whereas the cost of
applying a few extra terms is negligible, we gain significantly in having a much more flexible and general algorithm.

We note that approximation in (15) clearly reduces the problem of applying the operator to that of applying a
sequence of Gauss transforms [25,26], one by one. From this point of view, the algorithm that we present may be
considered as a procedure for applying a linear combination of Gauss transforms simultaneously.

In order to represent the kernel K of the operator in multiwavelet bases, we need to compute the integrals,

r
j ;�
i1i

′
1,i2i

′
2,i3i

′
3
=

M∑
m=1

2−3j

∫
B

wme−τm‖2−j (x+�)‖2
Φi1i

′
1
(x1)Φi2i

′
2
(x2)Φi3i

′
3
(x3)dx, (16)

where Φii′(x) are the cross-correlations of the scaling functions (see Appendix A). We obtain

r
j ;�
i1i

′
1,i2i

′
2,i3i

′
3
=

M∑
wmF

j ;m,l1
i1i

′
1

F
j ;m,l2
i2i

′
2

F
j ;m,l3
i3i

′
3

, (17)

m=1
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where

F
j ;m,l

ii′ = 1

2j

1∫
−1

e−τm(x+l)2/4j

Φii′(x)dx. (18)

Since the Gaussian kernel is not homogeneous, we have to compute integrals (18) for each scale. Although in
principle l ∈ Z, in the next section we explain how to restrict it to a limited range on each scale, for a given accuracy ε.

4. Modified ns-form of a multidimensional operator

In this section, we describe how the separated representation approximations of Section 3 can be used to construct
a multidimensional extension of the ns-form representation from Section 2.3, using only one-dimensional quantities
and norm estimates. This makes our approach viable for d > 1. We use the modified ns-form as in the one-dimensional
case described in Section 2.3. We find the ns-form essential for adaptive algorithms in more than one dimension, since:

(1) Scales do not interact as the operator is applied. All interactions between scales are accounted for by the (inex-
pensive) projection at the final step of the algorithm.

(2) For the same reason, the subdivision of space at different scales naturally maps into the supporting data structures.
We note that one of the main difficulties in developing adaptive algorithms is in organizing computations with
blocks of an adaptive decomposition of a function from different scales but with a common boundary. The meth-
ods for such computations are known as mortar elements methods. In our approach this issue does not present any
obstacle, as all relevant interactions are naturally accounted for by the data structures.

The key feature that makes our approach efficient in dimensions d � 2 is the separated structure of the modified
ns-form. Namely, the blocks of Tj − ↑(Tj−1) are of the form (for d = 3)

T�
j − ↑(

T�
j−1

) =
M∑

m=1

wmFj ;ml1Fj ;ml2Fj ;ml3 − ↑
(

M∑
m=1

wmFj−1;ml1Fj−1;ml2Fj−1;ml3

)

=
M∑

m=1

wmFj ;ml1Fj ;ml2Fj ;ml3 −
M∑

m=1

wm↑(
Fj−1;ml1

) · ↑(
Fj−1;ml2

) · ↑(
Fj−1;ml3

)
. (19)

As in the case d = 1, the norm of the operator blocks of T�
j − ↑(T�

j−1) decays rapidly with ‖�‖, � = (l1, l2, l3), and
the rate of decay depends on the number of vanishing moments of the basis [4]. Moreover, we limit the range of shift
indices ‖�‖ using only one-dimensional estimates of the differences

F
j ;m,2l

ii
′ − ↑F

j ;m,l

ii′ and F
j ;m,2l+1
ii′ − ↑F

j ;m,l

ii′ (20)

of operator blocks computed via (18). The norms of individual blocks F
j ;m,l

ii
′ are illustrated in Fig. 5a, for scale j = 1.

By selecting the number of vanishing moments for a given accuracy, it is sufficient to use ‖�‖∞ � 2 in practical
applications that we have encountered. Also, not all terms in the Gaussian expansion of an operator need to be included
since, depending on the scale j , their contribution may be negligible for a given accuracy, as shown in Fig. 5b.
Below we detail how we select terms of the Gaussian expansion on a given scale as well as the significant blocks of
T�

j − ↑(T�
j−1). This procedure establishes the band structure of the operator. We then project the banded operator

↑(T
bj

j−1) back to the scale j − 1 and then combine blocks on the natural scale for each projection in order to apply the
operator efficiently as was explained in Section 2.3 for the one-dimensional case.

We note that in deciding which terms to keep in (19), we do not compute the difference between the full three-
dimensional blocks as it would carry a high computational cost; instead we use estimates based on the one-dimensional
blocks of the separated representation. We note that since the resulting band structure depends only on the operator
and the desired accuracy of its approximation, one of the options is to store such band information as it is likely to be
reused.
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(a) (b)

Fig. 5. Comparison of norms of matrix blocks generated by the Gaussian approximation for the Poisson kernel in dimension d = 3. In each picture,
the curves correspond to the different offsets l for which blocks are generated. Part (b) illustrates the estimate in (23) (see main text for details).
(a) Norms of each one-dimensional block computed via (18) for scale j = 1, as a function of the index m in the separated representation. (b) Norm
estimates (23) for scale j = 1 as a function of the index m in the separated representation. Based on these estimates, only terms above the cutoff
are actually applied.

In order to efficiently identify the significant blocks in T�
j −↑(T�

j−1) as a function of �, we develop norm estimates
based only on the one-dimensional blocks. The difference between two terms of the separated representation, say
F1F2F3 − G1G2G3, may be written as

F1F2F3 − G1G2G3 = (F1 − G1)F2F3 + G1(F2 − G2)F3 + G1G2(F3 − G3).

We average six different combinations of the three terms to include all directions in a symmetric manner, which results
in the norm estimate

‖F1F2F3 − G1G2G3‖ � 1

6
sym

[‖F1 − G1‖‖F2‖‖F3‖ + ‖G1‖‖F2 − G2‖‖F3‖ + ‖G1‖‖G2‖‖F3 − G3‖
]
, (21)

where the symmetrization is over the three directions and generates 18 terms. For the rotationally symmetric operators
with Gaussian expansion as in (15) computing the right-hand side in this estimate involves just three types of one
dimensional blocks and their norms,

N
j ;m;l
dif = ∥∥Fj ;m;l − ↑(

Fj−1;m;l)∥∥, N
j ;m;l
F = ∥∥Fj ;m;l∥∥, N

j ;m;l
↑F = ∥∥↑(

Fj−1;m;l)∥∥, (22)

where index j indicates the scale, m the term in the Gaussian expansion (15), and l the position of the block in a given
direction.

These estimates allow us to discard blocks whose norm falls below a given threshold of accuracy, namely, for each
multi-index �, we estimate

∥∥T�
j − ↑(

T�
j−1

)∥∥ � 1

6

M∑
m=1

wm sym
[
N

j ;m;l1
dif N

j ;m;l2
F N

j ;m;l3
F + N

j ;m;l1
↑F N

j ;m;l2
dif N

j ;m;l3
F

+ N
j ;m;l1
↑F N

j ;m;l2
↑F N

j ;m;l3
dif

]
. (23)

For each scale j and each block T�
j − ↑(T�

j−1) labeled by the multi-index � = (l1, l2, l3), we compute all terms of the
sum in (23) and identify the range [m1,m2] which we need to keep for that block, by discarding from the sum terms
whose cumulative contribution is below ε. If the entire sum falls below ε, this range may be empty and the entire
T�

j −↑(T�
j−1) is discarded. The range [m1,m2] differs significantly depending whether or not the block is affected by

the singularity of the kernel as is illustrated in Fig. 5. In Fig. 5a the rate of decay for the blocks with shift |l| = 2,3 is
significantly faster than for the blocks with |l| � 1 affected by the singularity. We note that all blocks of the first 150
terms in the separated representation (17) have norm 1 (and rank 1 as matrices) and are not shown in Fig. 5a.

Since the difference in (23) involves blocks upsampled from a coarser scale, all shifts |l| � 3 are affected by the
singularity. Figure 5b shows the r.h.s. of the estimate in (23) for different shifts along one of the directions, where the
blocks along the other two directions are estimated by the maximum norm over all possible shifts.
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After discarding blocks with norms less that ε using the estimate in (23), we downsample the remaining blocks of
↑(T�

j−1) back to the original scale. This leaves only blocks of T�
j on the scale j and we remove additional blocks of

T�
j for the shifts |l| = 2,3 where the decay is sufficiently fast to make their contribution less than ε.

This leads us to arrange the blocks on each scale into several subsets by the effect the singularity of the kernel has
on them and find the appropriate range [m1,m2] for each subset. There are three such sets in dimension d = 2 and
four sets in dimension d = 3. For each index l, we will say that the index belongs to the core if l = −1,0,1 and to
the boundary otherwise. The core indices correspond to one-dimensional blocks whose defining integrals include the
singularity of the kernel. We then divide all possible values of the multi-index � = (l1, l2, l3), according to the number
of core indices it has. In d = 3 this gives us four sets:

• Core: all indices (l1, l2, l3) belong to the core.
• Boundary-1: two of the indices belong to the core and one to the boundary.
• Boundary-2: one of the indices belongs to the core, the other two to the boundary.
• Boundary-3: all indices (l1, l2, l3) belong to the boundary.

We then find the range [m1,m2] for each subset and apply blocks of each subset separately, thus avoiding unnec-
essary computations with blocks whose contribution is negligible. This range analysis only needs to be done once per
operator and the desired accuracy, and the results may be saved for repeated use.

5. Multidimensional adaptive application of ns-form

In this section we present an algorithm for applying the modified non-standard form which is an extension of (2)
(based on (8) and (10)) to higher dimensions. We are now seeking to compute

g(x) = [Tf ](x) =
∫

K(y − x)f (y)dy,

where x,y ∈ R
d for d = 2,3. The separated approximation (19) reduces the complexity of applying the operator by

allowing partial factorization of the nested loops in each scale indicated by the order of summation and illustrated for
d = 3,

gj ;l1l2l3 =
∑
m

wm

{∑
l′1

Fj ;m;l1−l′1
∑
l′2

Fj ;m,l2−l′2
∑
l′3

Fj ;m,l3−l′3

− ↑
[∑

l′1

Fj−1;m;l1−l′1
∑
l′2

Fj−1;m,l2−l′2
∑
l′3

Fj−1;m,l3−l′3

]}
f j ;l′1l′2l′3 .

As described in the previous section, this evaluation is done by regions of indices. These regions of indices are
organized so that (for a given accuracy) the number of retained terms of the separated representation is roughly the
same for all blocks within each region. Thus, we perform the summation over the terms of the separated representation
last, applying only the terms that actually contribute to the result above the requested accuracy threshold, according
to estimate (23).

Just as in the one-dimensional case, we use (19) in a ‘natural scale’ manner. That is, blocks belonging to scale j

are only applied on that scale. As in one-dimensional case, the interaction between scales is achieved by the mul-
tidimensional version of the projection (10) that redistributes blocks accumulated in this manner properly between
the scales to obtain the adaptive tree for the resulting output function. The overall approach is the same as described
in Algorithm 2. We note that, as expected, the separated representation requires more detailed bookkeeping when
constructing the data structures for the operator.

Remark 1. Our multiresolution decomposition corresponds to the geometrically varying refinement in finite element
methods. In this case the adjoining boxes do not necessarily share common vertices, leading to a non-conforming
grid. In finite element methods such situation requires additional construction provided by the mortar element meth-
ods. Mortar element methods were introduced by Patera and his associates, see e.g. [18–21]. These methods permit
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coupling discretizations of different types in non-overlapping domains. Such methods are fairly complicated and in-
volve, for example, the introduction of interface conditions through an L2 minimization. In our approach we do not
face these issues at all and do not have to introduce any additional interface conditions. The proper construction for
adjoining boxes is taken care by the redundant tree data structure and Step 2 of Algorithm 3 for applying the kernel,
which generates the necessary missing boxes on appropriate scales.

Remark 2. Although Algorithm 3 applies convolution operators, only minor changes are needed to use it for non-
convolutions. Of course in such case, the separated representation for the modified ns-form should be constructed
appropriately.

Algorithm 3. Adaptive non-standard form operator application in multiple dimensions (illustrated for d = 2),
g = Tf .

Initialization: Construct the redundant tree for f and copy it as skeleton tree for g (see Section 2.2.1).
for all scales j = 0, . . . , n − 1 do

for all function blocks g
j
l1l2

in the tree for g at scale j do
Step 1. Determine the list of all Core, Boundary-1 and Boundary-2 contributing operator blocks of the
modified ns-form Fj ;m;l1−l′1 ,F j ;m;l2−l′2 (see Section 4):
if g

j
l1l2

belongs to a leaf then
Read operator blocks Fj ;m;l1−l′1,F j ;m;l2−l′2 for Core, Boundary-1 and Boundary-2, and their weights wm

and corresponding ranges from the separated representation.
else

Read operator blocks Fj ;m;l1−l′1,F j ;m;l2−l′2 for Boundary-1 and Boundary-2, and their weights wm and
corresponding ranges from the separated representation.

end if
Step 2. Find the required blocks f

j

l′1l′2
of the input function f :

if function block f
j

l′1l′2
exists in the redundant tree for f then

Retrieve it.
else

Create it by interpolating from a coarser scale and cache for reuse.
end if
Step 3. Output function block computation:
For each set S of indices determined in Step 1 (Core, Boundary-1, Boundary-2) and the corresponding
ranges of terms in the separated representation, compute the sum

ĝ
j ;S
l1l2

=
∑
m

wm

∑
l′1

Fj ;m;l1−l′1
∑
l′2

Fj ;m;l2−l′2f j

l′1l′2
,

Add all computed sums to obtain ĝ
j
l1l2

.
end for

end for
Step 4. Adaptive projection:
Project resulting output function blocks ĝ

j
l1l2

on all scales into a proper adaptive tree by using Eq. (5).
Discard from the resulting tree unnecessary function blocks at the requested accuracy.
Return: the function g represented by its adaptive tree.

5.1. Operation count estimates

5.1.1. Adaptive decomposition of functions
The cost of adaptively decomposing a function in d dimensions is essentially that of an adaptive wavelet transform.

Specifically, it takes O(Nblocks ·pd+1) operations to compute such representation, where Nblocks is the final number of
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significant blocks in the representation and p is the order of multiwavelet basis chosen. In comparison with the usual
wavelet transform, it appears to be significantly more expensive. However, these O(pd+1) operations process O(pd)

points, thus in counting significant coefficients as it is done in the usual adaptive wavelet transform, we end up with
O(p) operations per point.

5.1.2. Operator application
The cost of applying an operator in the modified ns-form is O(NblocksMpd+1), where Nblocks is the number of

blocks in the adaptive representation of the input function, M is the separation rank of the kernel in (15) and p is the
order of the multiwavelet basis. For a given desired accuracy ε, we typically select p ∝ log ε−1; M has been shown to
be proportional to (log ε−1)ν , where ν depends on the operator [23]. In our numerical experiments, M is essentially
proportional to log ε−1, since we never use the full separated representation, as discussed in Section 4 and illustrated
in Fig. 5.

This operation count can be potentially reduced to O(NblocksMpd) by using the structure of the matrices in 18, and
we plan to address this in the future.

5.1.3. Final projection
After the operator has been applied to a function in a scale-independent fashion, a final projection step is required

as discussed in Section 2.3. This step requires O(Nblocks · pd) operations, the same as in the original function decom-
position. In practice, this time is negligible compared to the actual operator application.

6. Numerical examples

6.1. The Poisson equation

We illustrate the performance of the algorithm by solving the Poisson equation in d = 3

Δφ(r) = −ρ(r) (24)

with free space boundary conditions, φ(r) → 0 and ∂φ/∂r → 0 as r → ∞. We write the solution as

φ(r) = 1

4π

∫
R3

1

|r − r′|ρ(r′)dr′

and adaptively evaluate this integral. We note that our method can equally be used for d = 2, since the corresponding
Green’s function can also be represented as a sum of Gaussians, and the operator application algorithm has been
implemented in for both d = 2 and d = 3.

For our test we select

φ(r) =
3∑

i=1

e−α|r−r′|2 ,

so that we solve the Poisson equation with

ρ(r) = −Δφ(r) = −
3∑

i=1

(
4α2|r − ri |2 − 6α

)
e−α|r−ri |2 .

Our parameters are chosen as follows: α = 300, r1 = (0.5,0.5,0.5), r2 = (0.6,0.6,0.5) and r3 = (0.35,0.6,0.5).
These ensure that ρ(r) is well below our requested thresholds on the boundary of the computational domain. All
numerical experiments were performed on a Pentium-4 running at 2.8 GHz, with 2 GB of RAM. The results are
summarized in Table 2.

In order to gauge the speed of algorithm in reasonably computer-independent terms, we use a similar approach to
that of [17] and also provide timings of the fast Fourier transform (FFT). Specifically, we display timings for two FFTs
as an estimate of the time needed to solve the Poisson equation with a smooth right-hand side and periodic boundary
conditions in a cube. As in [17], we compute the rate that estimates the number of processed points per second. We
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Table 2
Accuracy and timings for the adaptive solution of the Poisson equation in (24)

p E2 E∞ Time (s) Rate (pts/s)

Requested ε = 10−3

6 5.0 × 10−3 7.9 × 10−1 1.2 7.2 × 104

8 1.7 × 10−3 1.2 × 10−1 0.51 7.3 × 104

10 4.4 × 10−4 3.7 × 10−2 0.68 1.1 × 105

Requested ε = 10−6

10 4.7 × 10−6 3.6 × 10−4 10.3 5.7 × 104

12 8.5 × 10−6 4.3 × 10−5 13.5 7.5 × 104

14 6.9 × 10−8 5.2 × 10−6 20.0 8.0 × 104

Requested ε = 10−9

16 2.5 × 10−10 2.2 × 10−8 68.1 3.5 × 104

18 7.7 × 10−11 3.5 × 10−9 100.3 3.4 × 104

20 1.2 × 10−10 1.8 × 10−8 133.4 3.5 × 104

Table 3
Timings of two 3D FFTs to estimate the speed of a non-adaptive, periodic Poisson solver on a cube for smooth functions

Size Time (s) Rate (pts/s)

323 0.02 1.7 × 106

643 0.22 1.2 × 106

1283 2.21 9.5 × 105

2563 20.7 8.1 × 105

Fig. 6. A two-dimensional slice of the three-dimensional subdivision of space by the scaling functions and an illustration of the source term for the
Poisson equation (24).

observe that for our adaptive algorithm such rate varies between 3.4 × 104 and 1.1 × 105 (see Table 2), whereas for
the FFTs it is around 106 (see Table 3). We note that our algorithm is not fully optimized, namely, we do not use the
structure of the matrices in (18) and the symmetries afforded by the radial kernels. We expect a substantial impact on
the speed by introducing these improvements and will report them separately.

We note that the multigrid method (see, e.g., [27,28]) is frequently used as a tool for solving the Poisson equation
(and similar problems) in differential form. The FFT-based gauge suggested in [17] is useful for comparisons with
these algorithms as well.
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Fig. 7. Convergence of the iteration to obtain the ground state of the hydrogen atom computed via formulation in (26) for the non-relativistic
Schrödinger equation. The requested accuracy in applying the Green’s function is set to 10−6.

6.2. The ground state of the hydrogen atom

A simple example of computing the ground state of the hydrogen atom illustrates the numerical performance of
the algorithms developed in this paper, and their utility for constructing more complex codes. The eigenfunctions
ψ for the hydrogen atom satisfy the time-independent Schrödinger equation (written in atomic units and spherical
coordinates),

−1

2
Δψ − 1

r
ψ = Eψ, (25)

where E is the energy eigenvalue. For the ground state, E = −1/2 and the (unnormalized) wave function is ψ = e−r .
Following [29], we write

φ = −2GμV φ, (26)

where Gμ = (−Δ + μ2I )−1 is the Green’s function for some μ and V = −1/r is the nuclear potential. For μ =√−2E the solution φ of (26) has ‖φ‖2 = 1 and coincides with that of (25). We solve (26) by a simple iteration
starting from some value μ0 and changing μ to obtain the solution with ‖φ‖2 = 1. The algorithm proceeds as follows:

(1) Initialize with some value μ0 and function φ. The number of iterations of the algorithm is only weakly sensitive
to these choices.

(2) Compute the product of the potential V and the function φ.
(3) Apply the Green’s function Gμ to the product V φ via the algorithm of this paper to compute

φnew = −2GμV φ.

(4) Compute the energy for φnew,

Enew =
1
2 〈∇φnew,∇φnew〉 + 〈V φnew, φnew〉

〈φnew, φnew〉 .

(5) Set μ = √−2Enew, φ = φnew/‖φnew‖ and return to Step 2.

The iteration is terminated as the change in μ and ‖φ‖ − 1 falls below the desired accuracy. The progress of the
iteration is illustrated in Fig. 7. The computations in Steps 2 and 4 use the three-dimensional extension of the approach
described in [13], to compute point-wise multiplications of adaptively represented functions and weak differential
operators of the same.

This example illustrates an application of our algorithm to problems in quantum chemistry. Multiresolution quan-
tum chemistry developed in [8–11] also uses separated representations. The main technical difference with [8–11]
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is that we use the modified non-standard form and apply operator blocks on their “natural” scale, thus producing a
fully adaptive algorithm. We are currently using this algorithm as part of a new method for solving the multiparticle
Schrödinger equation and will report the results elsewhere.

7. Discussion and conclusions

We have shown that a combination of separated and multiresolution representations of operators yields a new
multidimensional algorithm for applying a class of integral operators with radial kernels. We note that the same
algorithm is used for all such operators as they are approximated by a weighted sum of Gaussians. This fact makes
our approach applicable across multiple fields, where a single implementation of the core algorithm can be reused for
different specific problems. The algorithm is fully adaptive and avoids issues usually addressed by mortar methods.

The method of approximation underlying our approach is distinct from that of the FMM, has similar efficiency and
has the advantage of being more readily extendable to higher dimensions. We also note that semi-analytic approxi-
mations via weighted sums of Gaussians provide additional advantages in some applications. Although we described
the application of kernels in free space, there is a simple extension to problems with radial kernels subject to periodic,
Dirichlet or Neumann boundary conditions on a cube that we will describe separately.

The algorithm may be extended to classes of non-convolution operators, e.g., the Calderon–Zygmund operators.
For such extensions the separated representation may not be available in analytic form, as it is for the operators
of this paper, and may require a numerical construction. The separated representation of the kernel permits further
generalization of our approach to dimensions d � 3 for applying operators to functions in separated representation.

A notable remaining challenge is an efficient, high order extension of this technique to the application of operators
on domains with complicated geometries and surfaces.

Appendix A

A.1. Scaling functions

We use either the Legendre polynomials P0, . . . ,Pp−1 or the interpolating polynomials on the Gauss–Legendre
nodes in [−1,1] to construct an orthonormal basis for each subspace Vj [12,13].

Let us briefly describe some properties of the Legendre scaling functions φk , k = 0, . . . , p − 1, defined as

φk(x) =
{√

2k + 1Pk(2x − 1), x ∈ [0,1],
0, x /∈ [0,1], (A.1)

and forming a basis for V0. The subspace Vj is spanned by 2jp functions obtained from φ0, . . . , φp−1 by dilation and
translation,

φ
j
kl(x) = 2j/2φk

(
2j x − l

)
, k = 0, . . . , p − 1, l = 0, . . . ,2j − 1. (A.2)

These functions have support on [2−j l,2−j (l + 1)] and satisfy the orthonormality condition
∞∫

−∞
φ

j
kl(x)φ

j

k′l′(x)dx = δkk′δll′ . (A.3)

A function f , defined on [0,1], is represented in the subspace Vj by its normalized Legendre expansion

f (x) =
2j −1∑
l=0

p−1∑
k=0

s
j
klφ

j
kl(x), (A.4)

where the coefficients s
j
kl are computed via

s
j
kl =

2−j (l+1)∫
−j

f (x)φ
j
kl(x)dx. (A.5)
2 l
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As long as f (x) is smooth enough and is well approximated on [2−j l,2−j (l + 1)] by a polynomial of order up to
2p − 1, we may use Gauss–Legendre quadratures to calculate the s

j
kl via

s
j
kl = 2−j/2

p−1∑
i=0

f
(
2−j (xi + l)

)
φk(xi)wi, (A.6)

where x0, . . . , xp−1 are the roots of Pp(2x − 1) and w0, . . . ,wp−1 are the corresponding quadrature weights.
In more than one dimension, the above formulas are extended by using a tensor product basis in each subspace.

For example, in two dimensions Eq. (A.4) becomes

f (x, x′) =
2j −1∑
l=0

p−1∑
k=0

2j −1∑
l′=0

p−1∑
k′=0

s
j

kk′ll′φ
j
kl(x)φ

j

k′l′(x
′). (A.7)

A.2. Multiwavelets

We use piecewise polynomial functions ψ0, . . . ,ψp−1 as an orthonormal basis for W0 [12,13],

1∫
0

ψi(x)ψj (x)dx = δij . (A.8)

Since W0 ⊥ V0, the first p moments of all ψ0, . . . ,ψp−1 vanish:

1∫
0

ψi(x)xi dx = 0, i, j = 0,1, . . . , p − 1. (A.9)

The space Wj is spanned by 2jp functions obtained from ψ0, . . . ,ψp−1 by dilation and translation,

ψ
j
kl(x) = 2j/2ψk

(
2j x − l

)
, k = 0, . . . , p − 1, l = 0, . . . ,2j − 1, (A.10)

and supported in the interval Ijl = [2−j l,2−j (l + 1)]. A function f (x) defined on [0,1] is represented in the multi-
wavelet basis on n scales by

f (x) =
p−1∑
k=0

s0
k,0φk(x) +

n−1∑
j=0

2j −1∑
l=0

p−1∑
k=0

d
j
klψ

j
kl(x) (A.11)

with the coefficients d
j
kl computed via

d
j
kl =

2−j (l+1)∫
2−j l

f (x)ψ
j
kl(x)dx. (A.12)

A.3. Two-scale relations

The relation between subspaces, V0 ⊕ W0 = V1, is expressed via the two-scale difference equations,

φk(x) = √
2

p−1∑
k′=0

(
h

(0)

kk′φk′(2x) + h
(1)

kk′φk′(2x − 1)
)
, k = 0, . . . , p − 1, (A.13)

ψk(x) = √
2

p−1∑
′

(
g

(0)

kk′φk′(2x) + g
(1)

kk′φk′(2x − 1)
)
, k = 0, . . . , p − 1, (A.14)
k =0
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where the coefficients h
(0)
ij , h(1)

ij and g
(0)
ij , g(1)

ij depend on the type of polynomial basis used (Legendre or interpolating)
and its order p. The matrices of coefficients

H(0) = {
h

(0)

kk′
}
, H (1) = {

h
(1)

kk′
}
, G(0) = {

g
(0)

kk′
}
, G(1) = {

g
(1)

kk′
}

are the multiwavelet analogues of the quadrature mirror filters in the usual wavelet construction, e.g., [15]. These
matrices satisfy a number of important orthogonality relations and we refer to [13] for complete details, including the
construction of the H,G matrices themselves. Let us only state how these matrices are used to connect the scaling s

j
kl

and wavelet d
j
kl coefficients on neighboring scales j and j + 1. The decomposition procedure (j + 1 → j ) is based on

s
j
kl =

p−1∑
k′=0

(
h

(0)

kk′s
j+1
k,2l + h

(1)

kk′s
j+1
k,2l+1

)
, (A.15)

d
j
kl =

p−1∑
k′=0

(
g

(0)

kk′s
j+1
k,2l + g

(1)

kk′s
j+1
k,2l+1

); (A.16)

the reconstruction (j → j + 1) is based on

s
j+1
k,2l =

p−1∑
k′=0

(
h

(0)

kk′s
j
kl + g

(0)

kk′d
j
kl

)
, (A.17)

s
j+1
k,2l+1 =

p−1∑
k′=0

(
h

(1)

kk′s
j
kl + g

(1)

kk′d
j
kl

)
. (A.18)

A.4. Cross-correlation of the scaling functions

For convolution operators we only need to compute integrals with the cross-correlation functions of the scaling
functions,

Φii′(x) =
∞∫

−∞
φi(x + y)φi′(y)dy. (A.19)

Since the support of the scaling functions is restricted to [0,1], the functions Φii′ are zero outside the interval [−1,1]
and are polynomials on [−1,0] and [0,1] of degree i + i′ + 1,

Φii′(x) =
⎧⎨
⎩

Φ+
ii′(x), 0 � x � 1,

Φ−
ii′(x), −1 � x < 0,

0, 1 < |x|,
(A.20)

where i, i′ = 0, . . . , p − 1 and

Φ+
ii′(x) =

1−x∫
0

φi(x + y)φi′(y)dy, Φ−
ii′(x) =

1∫
−x

φi(x + y)φi′(y)dy. (A.21)

We summarize relevant properties of the cross-correlation functions Φii′ in

Proposition 3.

(1) Transposition of indices: Φii′(x) = (−1)i+i′Φi′i (x).
(2) Relations between Φ+ and Φ−: Φ−

i,i′(−x) = (−1)i+i′Φ+
i,i′(x) for 0 � x � 1.

(3) Values at zero: Φii′(0) = 0 if i �= i′, and Φii(0) = 1 for i = 0, . . . , p − 1.
(4) Upper bound: maxx∈[−1,1] |Φii′(x)| � 1 for i, i′ = 0, . . . , p − 1.
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(5) Connection with the Gegenbauer polynomials:
Φ+

00(x) = 1
2C

(−1/2)

1 (2x − 1) + 1
2 and Φ+

l0(x) = 1
2

√
2l + 1C

(−1/2)

l+1 (2x − 1), for l = 1,2, . . . , where C
(−1/2)

l+1 is the
Gegenbauer polynomial.

(6) Linear expansion: if i′ � i then we have

Φ+
ii′(x) =

i′+i∑
l=i′−i

cl
ii′Φ

+
l0(x), (A.22)

where

cl
ii′ =

{
4l(l + 1)

∫ 1
0 Φ+

ii′(x)Φ+
l0(x)

(
1 − (2x − 1)2

)−1 dx, i′ > i,

4l(l + 1)
∫ 1

0

(
Φ+

ii (x) − Φ+
00(x)

)
Φ+

l0(x)
(
1 − (2x − 1)2

)−1 dx, i′ = i,
(A.23)

for l � 1 and c0
ii′ = δii′ .

(7) Vanishing moments: we have
∫ 1
−1 Φ00(x)dx = 1 and

∫ 1
−1 xkΦii′(x)dx = 0 for i + i′ � 1 and 0 � k � i + i′ − 1.

Proof of these properties can be found in [24].

A.5. Separated representations of radial functions

As an example, consider approximating the function 1/rα by a collection of Gaussians. The number of terms
needed for this purpose is mercifully small. We have [23]

Proposition 4. For any α > 0, 0 < δ � 1, and 0 < ε � min
{ 1

2 , 8
α

}
, there exist positive numbers τm and wm such that∣∣∣∣∣r−α −

M∑
m=1

wme−τmr2

∣∣∣∣∣ � r−αε, for all δ � r � 1, (A.24)

with

M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1], (A.25)

where ck are constants that only depend on α. For fixed power α and accuracy ε, we have M = O(log δ−1).

The proof of Proposition 4 in [23] is based on using the trapezoidal rule to discretize an integral representation of
1/rα . Similar estimates may be obtained for more general radial kernels using their integral representations as in (14).

We note that approximations of the function 1/r via sums of Gaussians have been also considered in [30–32].

A.6. Estimates

By selecting appropriate ε and δ in the separated representations of a radial kernel K (as in Proposition 4), we
obtain a separated approximation for the coefficients

t
j ;�
ii′,jj ′,kk′ = 2−3j

∫
[−1,1]3

K
(
2−j (x + �)

)
Φii′(x1)Φjj ′(x2)Φkk′(x3)dx. (A.26)

Since the number of terms, M , depends logarithmically on ε and δ, we achieve any finite accuracy with a very
reasonable number of terms. For example, for the Poisson kernel K(r) = 1/4πr , we have the following estimate [24].

Proposition 5. For any ε > 0 and 0 < δ � 1 the coefficients t
j ;�
ii′,jj ′,kk′ in (A.26) have an approximation with a low

separation rank,

r
j ;�
ii′,jj ′,kk′ =

M∑
wmF

m,l1
ii′ F

m,l2
jj ′ F

m,l3
kk′ , (A.27)
m=1
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such that if maxi |li | � 2, then∣∣tj ;�
ii′,jj ′,kk′ − r

j ;�
ii′,jj ′,kk′

∣∣ � c02−2j ε, (A.28)

and if maxi |li | � 1, then∣∣tj ;�
ii′,jj ′,kk′ − r

j ;�
ii′,jj ′,kk′

∣∣ � 2−2j
(
c1δ

2 + c0ε
)

(A.29)

where ε, δ, M , τm, wm, m = 1, . . . ,M are described in Proposition 4 for α = 1 and c0 and c1 are (small) constants.

As described in Section 4, our adaptive algorithm selects only some of the terms, as needed on a given scale for
the desired accuracy ε.

A.7. Evaluation of integrals with the cross-correlation functions

We need to compute integrals in (18), where the cross-correlation functions Φii′ are given in (A.19). We note that
using (A.22), it is sufficient to compute

F
j ;m,l

i0 = 1

2j

1∫
−1

e−τm(x+l)2/4j

Φi0(x)dx

for 0 � i � 2p − 1 rather than p2 integrals in (18). Using the relation between Φ− and Φ+ in Proposition 3, we have

0∫
−1

Φ−
i0(x)e−τm(x+l)2

dx =
1∫

0

Φ−
i0(−x)e−τm(−x+l)2

dx = (−1)i

1∫
0

Φ+
i0(x)e−τm(x−l)2

dx,

so that

F
j ;m,l

i0 =
1∫

0

[
e−τm(x+l)2 + (−1)ie−τm(x−l)2]

Φ+
i0(x)dx.
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